Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Social Engineering Attack-Defense Strategies Based on Reinforcement Learning

    Rundong Yang1,*, Kangfeng Zheng1, Xiujuan Wang2, Bin Wu1, Chunhua Wu1

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2153-2170, 2023, DOI:10.32604/csse.2023.038917 - 28 July 2023

    Abstract Social engineering attacks are considered one of the most hazardous cyberattacks in cybersecurity, as human vulnerabilities are often the weakest link in the entire network. Such vulnerabilities are becoming increasingly susceptible to network security risks. Addressing the social engineering attack defense problem has been the focus of many studies. However, two main challenges hinder its successful resolution. Firstly, the vulnerabilities in social engineering attacks are unique due to multistage attacks, leading to incorrect social engineering defense strategies. Secondly, social engineering attacks are real-time, and the defense strategy algorithms based on gaming or reinforcement learning are… More >

  • Open Access

    ARTICLE

    Social Engineering Attack Classifications on Social Media Using Deep Learning

    Yichiet Aun1,*, Ming-Lee Gan1, Nur Haliza Binti Abdul Wahab2, Goh Hock Guan1

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4917-4931, 2023, DOI:10.32604/cmc.2023.032373 - 28 December 2022

    Abstract In defense-in-depth, humans have always been the weakest link in cybersecurity. However, unlike common threats, social engineering poses vulnerabilities not directly quantifiable in penetration testing. Most skilled social engineers trick users into giving up information voluntarily through attacks like phishing and adware. Social Engineering (SE) in social media is structurally similar to regular posts but contains malicious intrinsic meaning within the sentence semantic. In this paper, a novel SE model is trained using a Recurrent Neural Network Long Short Term Memory (RNN-LSTM) to identify well-disguised SE threats in social media posts. We use a custom… More >

Displaying 1-10 on page 1 of 2. Per Page