Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Based on Symbolic Execution and Graph Neural Networks

    Haoxin Sun1, Xiao Yu1,*, Jiale Li1, Yitong Xu1, Jie Yu1, Huanhuan Li1, Yuanzhang Li2, Yu-An Tan2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070930 - 09 December 2025

    Abstract Since the advent of smart contracts, security vulnerabilities have remained a persistent challenge, compromsing both the reliability of contract execution and the overall stability of the virtual currency market. Consequently, the academic community has devoted increasing attention to these security risks. However, conventional approaches to vulnerability detection frequently exhibit limited accuracy. To address this limitation, the present study introduces a novel vulnerability detection framework called GNNSE that integrates symbolic execution with graph neural networks (GNNs). The proposed method first constructs semantic graphs to comprehensively capture the control flow and data flow dependencies within smart contracts. More >

  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Using Large Language Models and Graph Structural Analysis

    Ra-Yeon Choi1, Yeji Song2, Minsoo Jang1, Taekyung Kim3, Jinhyun Ahn4,*, Dong-Hyuk Im5,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 785-801, 2025, DOI:10.32604/cmc.2025.061185 - 26 March 2025

    Abstract Smart contracts are self-executing programs on blockchains that manage complex business logic with transparency and integrity. However, their immutability after deployment makes programming errors particularly critical, as such errors can be exploited to compromise blockchain security. Existing vulnerability detection methods often rely on fixed rules or target specific vulnerabilities, limiting their scalability and adaptability to diverse smart contract scenarios. Furthermore, natural language processing approaches for source code analysis frequently fail to capture program flow, which is essential for identifying structural vulnerabilities. To address these limitations, we propose a novel model that integrates textual and structural… More >

  • Open Access

    REVIEW

    A Systematic Review and Performance Evaluation of Open-Source Tools for Smart Contract Vulnerability Detection

    Yaqiong He, Jinlin Fan*, Huaiguang Wu

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 995-1032, 2024, DOI:10.32604/cmc.2024.052887 - 18 July 2024

    Abstract With the rise of blockchain technology, the security issues of smart contracts have become increasingly critical. Despite the availability of numerous smart contract vulnerability detection tools, many face challenges such as slow updates, usability issues, and limited installation methods. These challenges hinder the adoption and practicality of these tools. This paper examines smart contract vulnerability detection tools from 2016 to 2023, sourced from the Web of Science (WOS) and Google Scholar. By systematically collecting, screening, and synthesizing relevant research, 38 open-source tools that provide installation methods were selected for further investigation. From a developer’s perspective,… More >

  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Method Based on Feature Graph and Multiple Attention Mechanisms

    Zhenxiang He*, Zhenyu Zhao, Ke Chen, Yanlin Liu

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3023-3045, 2024, DOI:10.32604/cmc.2024.050281 - 15 May 2024

    Abstract The fast-paced development of blockchain technology is evident. Yet, the security concerns of smart contracts represent a significant challenge to the stability and dependability of the entire blockchain ecosystem. Conventional smart contract vulnerability detection primarily relies on static analysis tools, which are less efficient and accurate. Although deep learning methods have improved detection efficiency, they are unable to fully utilize the static relationships within contracts. Therefore, we have adopted the advantages of the above two methods, combining feature extraction mode of tools with deep learning techniques. Firstly, we have constructed corresponding feature extraction mode for… More >

  • Open Access

    ARTICLE

    GRATDet: Smart Contract Vulnerability Detector Based on Graph Representation and Transformer

    Peng Gong1,2,3, Wenzhong Yang2,3,*, Liejun Wang2,3, Fuyuan Wei2,3, KeZiErBieKe HaiLaTi2,3, Yuanyuan Liao2,3

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1439-1462, 2023, DOI:10.32604/cmc.2023.038878 - 30 August 2023

    Abstract Smart contracts have led to more efficient development in finance and healthcare, but vulnerabilities in contracts pose high risks to their future applications. The current vulnerability detection methods for contracts are either based on fixed expert rules, which are inefficient, or rely on simplistic deep learning techniques that do not fully leverage contract semantic information. Therefore, there is ample room for improvement in terms of detection precision. To solve these problems, this paper proposes a vulnerability detector based on deep learning techniques, graph representation, and Transformer, called GRATDet. The method first performs swapping, insertion, and symbolization… More >

  • Open Access

    ARTICLE

    Analyzing Ethereum Smart Contract Vulnerabilities at Scale Based on Inter-Contract Dependency

    Qiuyun Lyu1, Chenhao Ma1, Yanzhao Shen2, Shaopeng Jiao3, Yipeng Sun1, Liqin Hu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1625-1647, 2023, DOI:10.32604/cmes.2022.021562 - 27 October 2022

    Abstract Smart contracts running on public blockchains are permissionless and decentralized, attracting both developers and malicious participants. Ethereum, the world’s largest decentralized application platform on which more than 40 million smart contracts are running, is frequently challenged by smart contract vulnerabilities. What’s worse, since the homogeneity of a wide range of smart contracts and the increase in inter-contract dependencies, a vulnerability in a certain smart contract could affect a large number of other contracts in Ethereum. However, little is known about how vulnerable contracts affect other on-chain contracts and which contracts can be affected. Thus, we… More >

Displaying 1-10 on page 1 of 6. Per Page