Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    SAR-LtYOLOv8: A Lightweight YOLOv8 Model for Small Object Detection in SAR Ship Images

    Conghao Niu1,*, Dezhi Han1, Bing Han2, Zhongdai Wu2

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1723-1748, 2024, DOI:10.32604/csse.2024.056736 - 22 November 2024

    Abstract The high coverage and all-weather capabilities of Synthetic Aperture Radar (SAR) image ship detection make it a widely accepted method for maritime ship positioning and identification. However, SAR ship detection faces challenges such as indistinct ship contours, low resolution, multi-scale features, noise, and complex background interference. This paper proposes a lightweight YOLOv8 model for small object detection in SAR ship images, incorporating key structures to enhance performance. The YOLOv8 backbone is replaced by the Slim Backbone (SB), and the Delete Medium-sized Detection Head (DMDH) structure is eliminated to concentrate on shallow features. Dynamically adjusting the… More >

  • Open Access

    ARTICLE

    MCBAN: A Small Object Detection Multi-Convolutional Block Attention Network

    Hina Bhanbhro1,*, Yew Kwang Hooi1, Mohammad Nordin Bin Zakaria1, Worapan Kusakunniran2, Zaira Hassan Amur1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2243-2259, 2024, DOI:10.32604/cmc.2024.052138 - 18 November 2024

    Abstract Object detection has made a significant leap forward in recent years. However, the detection of small objects continues to be a great difficulty for various reasons, such as they have a very small size and they are susceptible to missed detection due to background noise. Additionally, small object information is affected due to the downsampling operations. Deep learning-based detection methods have been utilized to address the challenge posed by small objects. In this work, we propose a novel method, the Multi-Convolutional Block Attention Network (MCBAN), to increase the detection accuracy of minute objects aiming to… More >

  • Open Access

    ARTICLE

    Two-Layer Attention Feature Pyramid Network for Small Object Detection

    Sheng Xiang1, Junhao Ma1, Qunli Shang1, Xianbao Wang1,*, Defu Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 713-731, 2024, DOI:10.32604/cmes.2024.052759 - 20 August 2024

    Abstract Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection. However, small objects are difficult to detect accurately because they contain less information. Many current methods, particularly those based on Feature Pyramid Network (FPN), address this challenge by leveraging multi-scale feature fusion. However, existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers, leading to suboptimal small object detection. To address this problem, we propose the Two-layer Attention Feature Pyramid Network (TA-FPN), featuring two key modules: the Two-layer Attention Module (TAM) and the… More > Graphic Abstract

    Two-Layer Attention Feature Pyramid Network for Small Object Detection

  • Open Access

    ARTICLE

    A Study on Enhancing Chip Detection Efficiency Using the Lightweight Van-YOLOv8 Network

    Meng Huang, Honglei Wei*, Xianyi Zhai

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 531-547, 2024, DOI:10.32604/cmc.2024.048510 - 25 April 2024

    Abstract In pursuit of cost-effective manufacturing, enterprises are increasingly adopting the practice of utilizing recycled semiconductor chips. To ensure consistent chip orientation during packaging, a circular marker on the front side is employed for pin alignment following successful functional testing. However, recycled chips often exhibit substantial surface wear, and the identification of the relatively small marker proves challenging. Moreover, the complexity of generic target detection algorithms hampers seamless deployment. Addressing these issues, this paper introduces a lightweight YOLOv8s-based network tailored for detecting markings on recycled chips, termed Van-YOLOv8. Initially, to alleviate the influence of diminutive, low-resolution… More >

  • Open Access

    ARTICLE

    MSC-YOLO: Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View

    Xiangyan Tang1,2, Chengchun Ruan1,2,*, Xiulai Li2,3, Binbin Li1,2, Cebin Fu1,2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 983-1003, 2024, DOI:10.32604/cmc.2024.047541 - 25 April 2024

    Abstract Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in the field of small object detection on unmanned aerial vehicles (UAVs). This task is challenging due to variations in UAV flight altitude, differences in object scales, as well as factors like flight speed and motion blur. To enhance the detection efficacy of small targets in drone aerial imagery, we propose an enhanced You Only Look Once version 7 (YOLOv7) algorithm based on multi-scale spatial context. We build the MSC-YOLO model, which incorporates an additional prediction head, denoted as P2, to… More >

  • Open Access

    ARTICLE

    Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer

    Changfeng Feng1, Chunping Wang2, Dongdong Zhang1, Renke Kou1, Qiang Fu1,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3993-4013, 2024, DOI:10.32604/cmc.2024.048351 - 26 March 2024

    Abstract Transformer-based models have facilitated significant advances in object detection. However, their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle (UAV) imagery. Addressing these limitations, we propose a hybrid transformer-based detector, H-DETR, and enhance it for dense small objects, leading to an accurate and efficient model. Firstly, we introduce a hybrid transformer encoder, which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently. Furthermore, we propose two novel strategies to enhance detection performance without incurring additional inference… More >

  • Open Access

    ARTICLE

    CAW-YOLO: Cross-Layer Fusion and Weighted Receptive Field-Based YOLO for Small Object Detection in Remote Sensing

    Weiya Shi1,*, Shaowen Zhang2, Shiqiang Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3209-3231, 2024, DOI:10.32604/cmes.2023.044863 - 11 March 2024

    Abstract In recent years, there has been extensive research on object detection methods applied to optical remote sensing images utilizing convolutional neural networks. Despite these efforts, the detection of small objects in remote sensing remains a formidable challenge. The deep network structure will bring about the loss of object features, resulting in the loss of object features and the near elimination of some subtle features associated with small objects in deep layers. Additionally, the features of small objects are susceptible to interference from background features contained within the image, leading to a decline in detection accuracy.… More >

  • Open Access

    ARTICLE

    Interactive Transformer for Small Object Detection

    Jian Wei, Qinzhao Wang*, Zixu Zhao

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1699-1717, 2023, DOI:10.32604/cmc.2023.044284 - 29 November 2023

    Abstract The detection of large-scale objects has achieved high accuracy, but due to the low peak signal to noise ratio (PSNR), fewer distinguishing features, and ease of being occluded by the surroundings, the detection of small objects, however, does not enjoy similar success. Endeavor to solve the problem, this paper proposes an attention mechanism based on cross-Key values. Based on the traditional transformer, this paper first improves the feature processing with the convolution module, effectively maintaining the local semantic context in the middle layer, and significantly reducing the number of parameters of the model. Then, to More >

  • Open Access

    ARTICLE

    MPFracNet: A Deep Learning Algorithm for Metacarpophalangeal Fracture Detection with Varied Difficulties

    Geng Qin1, Ping Luo1, Kaiyuan Li1, Yufeng Sun1, Shiwei Wang1, Xiaoting Li1,2,3, Shuang Liu1,2,3, Linyan Xue1,2,3,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 999-1015, 2023, DOI:10.32604/cmc.2023.035777 - 06 February 2023

    Abstract Due to small size and high occult, metacarpophalangeal fracture diagnosis displays a low accuracy in terms of fracture detection and location in X-ray images. To efficiently detect metacarpophalangeal fractures on X-ray images as the second opinion for radiologists, we proposed a novel one-stage neural network named MPFracNet based on RetinaNet. In MPFracNet, a deformable bottleneck block (DBB) was integrated into the bottleneck to better adapt to the geometric variation of the fractures. Furthermore, an integrated feature fusion module (IFFM) was employed to obtain more in-depth semantic and shallow detail features. Specifically, Focal Loss and Balanced… More >

  • Open Access

    ARTICLE

    DSAFF-Net: A Backbone Network Based on Mask R-CNN for Small Object Detection

    Jian Peng1,2, Yifang Zhao1,2, Dengyong Zhang1,2,*, Feng Li1,2, Arun Kumar Sangaiah3

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3405-3419, 2023, DOI:10.32604/cmc.2023.027627 - 31 October 2022

    Abstract Recently, object detection based on convolutional neural networks (CNNs) has developed rapidly. The backbone networks for basic feature extraction are an important component of the whole detection task. Therefore, we present a new feature extraction strategy in this paper, which name is DSAFF-Net. In this strategy, we design: 1) a sandwich attention feature fusion module (SAFF module). Its purpose is to enhance the semantic information of shallow features and resolution of deep features, which is beneficial to small object detection after feature fusion. 2) to add a new stage called D-block to alleviate the disadvantages… More >

Displaying 1-10 on page 1 of 13. Per Page