Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Effects of Strain Rate and Fiber Content on the Dynamic Mechanical Properties of Sisal Fiber Cement-Based Composites

    Yubo Zhang, Ping Lei, Lina Wang, Jiqing Yang*

    Journal of Renewable Materials, Vol.11, No.1, pp. 393-410, 2023, DOI:10.32604/jrm.2022.022659 - 10 August 2022

    Abstract In this paper, a split Hopkinson pressure bar (SHPB) was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites (SFRCCs), and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS). The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials. Compared with ordinary cement-based composites (OCCs), the SFRCCs demonstrate higher post-peak strength, ductility, and energy absorption capacity with higher fiber content. Moreover, the SFRCCs are strain rate sensitive materials, and their peak stress, ultimate More >

  • Open Access

    ARTICLE

    Experimental Investigation on the Mechanical Properties of Natural Fiber Reinforced Concrete

    Ismail Shah1,2, Jing Li1,2,*, Shengyuan Yang1, Yubo Zhang1, Aftab Anwar1,2

    Journal of Renewable Materials, Vol.10, No.5, pp. 1307-1320, 2022, DOI:10.32604/jrm.2022.017513 - 22 December 2021

    Abstract Recently, addition of various natural fibers to high strength concrete has aroused great interest in the field of building materials. This is because natural fibers are much cheaper and locally available, as compare to synthetic fibers. Keeping in view, this current research conducted mainly focuses on the static properties of hybridized (sisal/coir), sisal and coir fiber-reinforced concrete. Two types of natural fibers sisal and coir were used in the experiment with different lengths of 10, 20 and 30 mm and various natural fiber concentrations of 0.5%, 1.0%, and 1.5% by mass of cement, to investigate… More > Graphic Abstract

    Experimental Investigation on the Mechanical Properties of Natural Fiber Reinforced Concrete

  • Open Access

    ARTICLE

    Polyurethane Composites Synthesized Using Natural Oil-Based Polyols and Sisal Fibers

    S. Michałowski1, M. A. Mosiewicki2*, M. Kuran´ska1, M. I. Aranguren2, A. Prociak1

    Journal of Renewable Materials, Vol.6, No.4, pp. 426-437, 2018, DOI:10.7569/JRM.2017.634163

    Abstract Elastomeric polyurethanes were prepared from a reference polyurethane system modified with biobased polyols synthesized using rapeseed or palm oils. The reference material was modified by replacement of the commercial polyol by 10% of biopolyols and also by addition of sisal fibers up to 5 wt%. The higher functionality of the biopolyols increased the crosslinking density of the networks and this was reflected by an increase in hardness and a decrease in water absorption. The effect of the sisal fibers mainly improved the mechanical and thermomechanical properties of the system with rapeseed oil because of good More >

  • Open Access

    ARTICLE

    Physico-Chemical and Morphological Characterization of Cellulosic Samples Obtained from Sisal Fibers

    G. Mondragon, C. Peña-Rodriguez, A. Eceiza, A. Arbelaiz*

    Journal of Renewable Materials, Vol.5, No.5, pp. 345-356, 2017, DOI:10.7569/JRM.2017.634124

    Abstract In this work, the main chemical reactions conditions of a succession of specific chemical treatments used for the isolation of nanocellulose from sisal fibers were evaluated. The novelty of this work is the study done to analyze the effect of different reaction conditions (time or concentration) in fiber structure and composition as well as in the characteristics of obtained cellulosic samples. In order to achieve this goal different physicochemical, thermal and morphological characterization techniques were used after each chemical treatment and the most suitable reaction conditions were selected for the subsequent treatment. Moreover, the thermal More >

Displaying 1-10 on page 1 of 4. Per Page