Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Better Visual Image Super-Resolution with Laplacian Pyramid of Generative Adversarial Networks

    Ming Zhao1, Xinhong Liu1, Xin Yao1, *, Kun He2

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1601-1614, 2020, DOI:10.32604/cmc.2020.09754 - 30 June 2020

    Abstract Although there has been a great breakthrough in the accuracy and speed of super-resolution (SR) reconstruction of a single image by using a convolutional neural network, an important problem remains unresolved: how to restore finer texture details during image super-resolution reconstruction? This paper proposes an Enhanced Laplacian Pyramid Generative Adversarial Network (ELSRGAN), based on the Laplacian pyramid to capture the high-frequency details of the image. By combining Laplacian pyramids and generative adversarial networks, progressive reconstruction of super-resolution images can be made, making model applications more flexible. In order to solve the problem of gradient disappearance,… More >

Displaying 1-10 on page 1 of 1. Per Page