Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,150)
  • Open Access

    ARTICLE

    Coupled Numerical Simulation of Electromagnetic and Flow Fields in a Magnetohydrodynamic Induction Pump

    He Wang1,*, Ying He2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 889-899, 2024, DOI:10.32604/fdmp.2023.042728

    Abstract Magnetohydrodynamic (MHD) induction pumps are contactless pumps able to withstand harsh environments. The rate of fluid flow through the pump directly affects the efficiency and stability of the device. To explore the influence of induction pump settings on the related delivery speed, in this study, a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump. The effects of current intensity, frequency, coil turns and coil winding size on the velocity of the working fluid are analyzed. It is shown that the first three parameters have a… More >

  • Open Access

    REVIEW

    A Review on Finite Element Alternating Methods for Analyzing 2D and 3D Cracks

    Jai Hak Park*

    Digital Engineering and Digital Twin, Vol.2, pp. 79-101, 2024, DOI:10.32604/dedt.2024.047280

    Abstract A finite element alternating method has been known as a very convenient and accurate method to solve two and three-dimensional crack problems. In this method, a general crack problem is solved by a superposition of two solutions. One is a finite element solution for a finite body without a crack, and the other is an analytical solution for a crack in an infinite body. Since a crack is not considered in a finite element model, generating a model is very simple. The method is especially very convenient for a fatigue crack growth simulation. Over the past 40 years, S. N.… More >

  • Open Access

    ARTICLE

    Experimental Study of Heat Transfer in an Insulated Local Heated from Below and Comparison with Simulation by Lattice Boltzmann Method

    Noureddine Abouricha1,*, Ayoub Gounni2, Mustapha El Alami2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 359-375, 2024, DOI:10.32604/fhmt.2024.047632

    Abstract In this paper, experimental and numerical studies of heat transfer in a test local of side heated from below are presented and compared. All the walls, the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form ( plywood- polystyrene- plywood) just on one of the vertical walls contained a glazed door (). This local is heated during two heating cycles by a square plate of iron the width , which represents the heat source, its temperature is controlled. The plate is heated for two cycles by an adjustable set-point heat source placed just… More >

  • Open Access

    ARTICLE

    Energy and Exergy Analysis of Pyramid-Type Solar Still Coupled with Magnetic and Electrical Effects by Using Matlab Simulation

    Karrar A. Hammoodi1,*, Hayder A. Dhahad2, Wissam H. Alawee3, Z. M. Omara4

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 217-262, 2024, DOI:10.32604/fhmt.2024.047329

    Abstract In the face of an escalating global water crisis, countries worldwide grapple with the crippling effects of scarcity, jeopardizing economic progress and hindering societal advancement. Solar energy emerges as a beacon of hope, offering a sustainable and environmentally friendly solution to desalination. Solar distillation technology, harnessing the power of the sun, transforms seawater into freshwater, expanding the availability of this precious resource. Optimizing solar still performance under specific climatic conditions and evaluating different configurations is crucial for practical implementation and widespread adoption of solar energy. In this study, we conducted theoretical investigations on three distinct solar still configurations to evaluate… More > Graphic Abstract

    Energy and Exergy Analysis of Pyramid-Type Solar Still Coupled with Magnetic and Electrical Effects by Using Matlab Simulation

  • Open Access

    ARTICLE

    Performance Simulation of a Double Tube Heat Exchanger Based on Different Nanofluids by Aspen Plus

    Fawziea M. Hussien1, Atheer S. Hassoon2,*, Ghaidaa M. Ahmed1

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 175-191, 2024, DOI:10.32604/fhmt.2023.047177

    Abstract A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity. Adding nanoparticles of high thermal conductivity materials is a significant way to enhance the heat transfer fluid's thermal conductivity. This research used engine oil containing alumina (Al2O3) nanoparticles and copper oxide (CuO) to test whether or not the heat exchanger’s efficiency could be improved. To establish the most effective elements for heat transfer enhancement, the heat exchangers thermal performance was tested at 0.05% and 0.1% concentrations for Al2O3 and CuO nanoparticles. The simulation results showed that the percentage increase in Nusselt number (Nu)… More >

  • Open Access

    ARTICLE

    VOLUME OF FLUID SIMULATION OF BOILING TWO-PHASE FLOW IN A VAPOR-VENTING MICROCHANNEL

    Chen Fang*, Milnes David, Anita Rogacs, Kenneth Goodson

    Frontiers in Heat and Mass Transfer, Vol.1, No.1, pp. 1-11, 2010, DOI:10.5098/hmt.v1.1.3002

    Abstract Vapor-venting microchannel heat exchangers are promising because they address the problems of high pressure drop, flow instability, and local dryout that are common in conventional two-phase microchannel heat sinks. We present a 3D numerical simulation of the vapor-venting process in a rectangular microchannel bounded on one side by a hydrophobic porous membrane for phase-separation. The simulation is based on the volume of fluid (VOF) method together with models for interphase mass transfer and capillary force. Simulation shows the vapor-venting mechanism can effectively mitigate the vapor accumulation issue, reduce the pressure drop, and suppress the local dry-out in the microchannel. Pressure… More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF TURBULENT FLOW IN A RECTANGULAR CHANNEL WITH PERIODICALLY MOUNTED LONGITUDINAL VORTEX GENERATORS

    Pankaj Sahaa, Gautam Biswasa,b,*

    Frontiers in Heat and Mass Transfer, Vol.2, No.3, pp. 1-5, 2011, DOI:10.5098/hmt.v2.3.3008

    Abstract Detailed flow structure in turbulent flows through a rectangular channel containing built-in winglet type vortex generators have been analyzed by means of solutions of the full Navier-Stokes equations using a Large-Eddy Simulation (LES) technique. The Reynolds number of investigation is 6000. The geometry of interest consists of a rectangular channel with a built-in winglet pair on the bottom wall with common-flow-down arrangement. The winglet pair induces streamwise longitudinal vortices behind it. The vortices swirl the flow around the axis parallel to the mainstream direction and disrupt the growth of thermal boundary layer entailing enhancement of heat transfer. The influence of… More >

  • Open Access

    ARTICLE

    BIO-HEAT TRANSFER SIMULATION OF SQUARE AND CIRCULAR ARRAY OF RETINAL LASER IRRADIATION

    Arunn Narasimhan*, Kaushal Kumar Jha

    Frontiers in Heat and Mass Transfer, Vol.2, No.3, pp. 1-8, 2011, DOI:10.5098/hmt.v2.3.3005

    Abstract Pan Retinal photocoagulation (PRP), a retinal laser surgical process, is simulated using a three-dimensional bio-heat transfer numerical model. Spots of two different type of array, square array of 3 × 3 spots and a circular array of six spots surrounding a central spot, are sequentially irradiated. Pennes bio-heat transfer model is used as the governing equation. Finite volume method is applied to find the temperature distribution due to laser irradiation inside the human eye. Each spot is heated for 100 ms and subsequently cooled for 100 ms with an initial laser power of 0.2 W. Based on the outcome of… More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF DROPLET IMPACT AND SOLIDIFICATION INCLUDING THERMAL SHRINKAGE IN A THERMAL SPRAY PROCESS

    Sina Alavi, Mohammad Passandideh-Fard*

    Frontiers in Heat and Mass Transfer, Vol.2, No.2, pp. 1-9, 2011, DOI:10.5098/hmt.v2.2.3007

    Abstract In this paper, a numerical study is performed to investigate the effects of thermal shrinkage on the deposition of molten particles on a substrate in a thermal spray process using the Volume-of-Fluid (VOF) method. Thermal shrinkage is a phenomenon caused by the variation of density during cooling and solidification of a molten metal. The Navier-Stokes equations along with the energy equation including phase change are solved using a 2D/axisymmetric mesh. The VOF method is used to track the free surface of molten particles, and an enthalpy-porosity formulation is used to model solidification. For the normal impact of tin particles in… More >

  • Open Access

    ARTICLE

    SIMULATION OF EMBOLIZATION PARTICLE TRAJECTORIES

    Nessa Johnson, John Abraham*, Zach Helgeson, Michael Hennessey

    Frontiers in Heat and Mass Transfer, Vol.2, No.2, pp. 1-7, 2011, DOI:10.5098/hmt.v2.2.3006

    Abstract A numerical simulation has been performed on the hemodynamics associated with embolization procedures. The flow geometry includes a multibranch artery which is upstream of a targeted tumor. During the procedure, drug-eluting particles are released into the local arterial geometry and are carried downstream by the flowing blood. The intention is to cause embolization of a daughter artery which feeds the tumor. As particles are injected into the blood stream, and as the embolization progresses, it is possible for the particulates to substantially alter the blood flow in the main artery. This alteration may lead to a maldistribution of blood flow… More >

Displaying 1-10 on page 1 of 1150. Per Page