Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    REVIEW

    Implication of Water-Rock Interaction for Enhancing Shale Gas Production

    Qiuyang Cheng1,2,3, Lijun You3,*, Cheng Chang1,2, Weiyang Xie1,2, Haoran Hu1,2, Xingchen Wang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1441-1462, 2024, DOI:10.32604/fdmp.2024.051200 - 23 July 2024

    Abstract Horizontal well drilling and multi-stage hydraulic fracturing technologies are at the root of commercial shale gas development and exploitation. During these processes, typically, a large amount of working fluid enters the formation, resulting in widespread water-rock interaction. Deeply understanding such effects is required to optimize the production system. In this study, the mechanisms of water-rock interaction and the associated responses of shale fabric are systematically reviewed for working fluids such as neutral fluids, acid fluids, alkali fluids and oxidative fluids. It is shown that shale is generally rich in water-sensitive components such as clay minerals,… More >

  • Open Access

    ARTICLE

    Study of Oil-Bearing Drill Cuttings Cleaning and De-Oiling Treatment Method for Shale Gas Reservoirs

    Jialuo Rong1,2, Shuixiang Xie3,4, Huijing Geng5, Hao Hu1,2, Shanfa Tang1,2,*, Yuanpeng Cheng1,2,*

    Energy Engineering, Vol.120, No.8, pp. 1899-1917, 2023, DOI:10.32604/ee.2023.027650 - 05 June 2023

    Abstract Due to its extensive use in shale gas exploration and development, oil-based drilling fluids generate large amounts of oil-bearing drill cuttings during the drilling process. The large amount of oil-bearing drill cuttings generated during the drilling process can lead to serious secondary contamination. In this study, a wetting agent FSC-6 with good hydrophobic and oleophobic properties was synthesized to construct an efficient oil removal system. For the first time, the mechanism of this system was analyzed by using the theory of adhesion function, interfacial tension and wettability. At the same time, a combined acoustic-chemical treatment More >

  • Open Access

    ARTICLE

    Simulation of the Production Performances of Horizontal Wells with a Fractured Shale Gas Reservoir

    Hongsha Xiao1, Ruihan Zhang2,*, Man Chen1, Cui Jing1, Shangjun Gao1, Chao Chen1, Huiyan Zhao1, Xin Huang2,*, Bo Kang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1803-1815, 2023, DOI:10.32604/fdmp.2023.026143 - 08 March 2023

    Abstract The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated. In particular, a micro-seismic cloud diagram is used to describe the fracture network, and accordingly, a production model is introduced based on a multi-scale flow mechanism. A finite volume method is then exploited for the integration of the model equations. The effects of apparent permeability, conductivity, Langmuir volume, and bottom hole pressure on gas well production are studied accordingly. The simulation results show that ignoring the micro-scale flow mechanism of the shale gas leads to underestimating the More > Graphic Abstract

    Simulation of the Production Performances of Horizontal Wells with a Fractured Shale Gas Reservoir

Displaying 1-10 on page 1 of 3. Per Page