Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (59)
  • Open Access

    ARTICLE

    A Dynamic IPR Framework for Predicting Shale Oil Well Productivity in the Spontaneous Flow Stage

    Sheng Lei1,2,3, Guanglong Sheng1,2,3,*, Hui Zhao1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3011-3031, 2025, DOI:10.32604/fdmp.2025.073802 - 31 December 2025

    Abstract This study investigates the unsteady flow characteristics of shale oil reservoirs during the depletion development process, with a particular focus on production behavior following fracturing and shut-in stages. Shale reservoirs exhibit distinctive production patterns that differ from traditional oil reservoirs, as their inflow performance does not conform to the classic steady-state relationship. Instead, production is governed by unsteady-state flow behavior, and the combined effects of the wellbore and choke cause the inflow performance curve to evolve dynamically over time. To address these challenges, this study introduces the concept of a “Dynamic IPR curve” and develops… More >

  • Open Access

    ARTICLE

    Simulation of Temperature Field in Oil-Based Drill Cuttings Pyrolysis Furnace for Shale Gas

    Pu Liu, Guangwei Bai*, Wei Li, Chuanhua Ge

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1847-1864, 2025, DOI:10.32604/fhmt.2025.070378 - 31 December 2025

    Abstract To address the issue of uneven temperature distribution in shale gas oil-based drill cuttings pyrolysis furnaces, a numerical model was developed using Fluent software. The effects of nitrogen flow rate, heating tube spacing, and furnace dimensions on the internal temperature field were thoroughly analyzed from a mechanistic perspective. The results indicated that non-uniform radiation from the heating tubes and flow disturbances induced by the nitrogen stream were the primary causes of localized heat concentration. Under no-load conditions, the maximum deviation between simulated and on-site measured temperatures was 1.5%, validating the model’s accuracy. Furthermore, this study More >

  • Open Access

    ARTICLE

    Synthesis of Hyperbranched Polyethyleneimine-Propylene Oxide-N-isopropylacrylamide (HPEI-co-PO-co-NIPAM) Terpolymer as a Shale Inhibitor

    Wenjun Hu, Liquan Zhang*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1159-1179, 2025, DOI:10.32604/jpm.2025.072450 - 26 December 2025

    Abstract Addressing the persistent challenge of shale hydration and swelling in water-based drilling fluids (WBDFs), this study developed a smart thermo-responsive shale inhibitor, Hyperbranched Polyethyleneimine-Propylene Oxide-N-isopropylacrylamide (HPN). It was synthesized by grafting hyperbranched polyethyleneimine (HPEI) with propylene oxide (PO) and N-isopropylacrylamide (NIPAM), creating a synergistic hydration barrier through hydrophobic association and temperature-triggered pore plugging. Structural characterization by Fourier-Transform Infrared (FTIR) spectroscopy and gel permeation chromatography (GPC) confirmed the successful formation of the HPN terpolymer, revealing a unique “cationic–nonionic” amphiphilic architecture with temperature-responsive properties. Performance evaluation demonstrated that HPN significantly outperforms conventional inhibitors, including potassium chloride (KCl),… More >

  • Open Access

    ARTICLE

    Distribution Patterns of Deep Shale Reservoirs and Longitudinal Utilization Degree of Horizontal Wells

    Hai Li1, Ziqiang Xia2,3,*, Majia Zheng4, Weiyang Xie2,3, Jianlin Li1, Ruiqi Gao2,3, Gaoxiang Wang2,3, Jiangrong Feng2,3

    Energy Engineering, Vol.122, No.12, pp. 5039-5054, 2025, DOI:10.32604/ee.2025.069036 - 27 November 2025

    Abstract To explore and evaluate the longitudinal utilization degree of marine shale gas horizontal wells in southern Sichuan Basin (hereinafter referred to as “southern Sichuan”), focusing on the shale of Wufeng formation-Longyi1 sub-member in the deep Z block. By using the data from core experiments, well logging, and fracture height detection, a systematic analysis from the perspectives of reservoir distribution, longitudinal utilization height of hydraulic fractures, and longitudinal utilization degree of horizontal wells was conducted. The research results show that: (1) The overall reservoir conditions of the Wufeng formation-Longyi1 sub-member in the study area are relatively… More > Graphic Abstract

    Distribution Patterns of Deep Shale Reservoirs and Longitudinal Utilization Degree of Horizontal Wells

  • Open Access

    ARTICLE

    Impact of Proppant Embedding on Long-Term Fracture Conductivity and Shale Gas Production Decline

    Junchen Liu1, Feng Zhou1, Xiaofeng Lu1, Xiaojin Zhou2, Xianjun He1, Yurou Du3, Fuguo Xia1, Junfu Zhang4, Weiyi Luo4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2613-2628, 2025, DOI:10.32604/fdmp.2025.069772 - 30 October 2025

    Abstract In shale gas reservoir stimulation, proppants are essential for sustaining fracture conductivity. However, increasing closing stress causes proppants to embed into the rock matrix, leading to a progressive decline in fracture permeability and conductivity. Furthermore, rock creep contributes to long-term reductions in fracture performance. To elucidate the combined effects of proppant embedding and rock creep on sustained conductivity, this study conducted controlled experiments examining conductivity decay in propped fractures under varying closing stresses, explicitly accounting for both mechanisms. An embedded discrete fracture model was developed to simulate reservoir production under different conductivity decay scenarios, while… More >

  • Open Access

    ARTICLE

    Analytical Modeling and Comparative Analysis of Capillary Imbibition in Shale Pores of Various Geometries

    Jin Xue, Boyun Guo*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3307-3328, 2025, DOI:10.32604/cmes.2025.069909 - 30 September 2025

    Abstract Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance, both of which are closely related to the pore geometry. This study established five self-imbibition models with idealized pore structures and conducted a comparative analysis of these models. These models include circular, square, and equilateral triangular capillaries; a triangular star-shaped cross-section formed by three tangent spherical particles; and a traditional porous medium representation method. All these models are derived based on Newton’s second law, where capillary pressure is described by the Young-Laplace equation and viscous… More >

  • Open Access

    PROCEEDINGS

    Mechanics Differences of Laminations and Crack Propagation Mechanism of Continental Shale

    Yongting Duan*Chengcheng Zhu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010514

    Abstract Clarify the mechanical properties of different laminations and the fracture mechanism of continental shale under in-situ stress can provide theoretical basis for more comprehensive evaluation of the fracability of continental shale oil reservoir. The Chang 72 continental shale was used to investigate the mechanical properties of laminations and the effect of natural structure on the crack propagation of the shale. The X-ray diffraction (XRD) and thin section tests show that the laminations contain two types: bright sandy lamination with void structure and dark muddy lamination with layer structure. The real-time Computed Tomography (CT) uniaxial compression… More >

  • Open Access

    ARTICLE

    Experimental Investigation of Fracture Propagation Induced by Supercritical CO2 in Deep Shale Reservoirs

    Taizhi Shen1, Gang Chen1, Jiang Bai1, Dan Zhang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1917-1934, 2025, DOI:10.32604/fdmp.2025.067114 - 12 September 2025

    Abstract Deep shale reservoirs are often associated with extreme geological conditions, including high temperatures, substantial horizontal stress differences, elevated closure stresses, and high breakdown pressures. These factors pose significant challenges to conventional hydraulic fracturing with water-based fluids, which may induce formation damage and fail to generate complex fracture networks. Supercritical carbon dioxide (SC-CO2), with its low viscosity, high diffusivity, low surface tension, and minimal water sensitivity, has attracted growing attention as an alternative fracturing fluid for deep shale stimulation. This study presents a series of true triaxial large-scale physical experiments using shale samples from the Longmaxi Formation More >

  • Open Access

    ARTICLE

    Evaluation of Estimated Ultimate Recovery for Shale Gas Infill Wells Considering Inter-Well Crossflow Dynamics

    Cuiping Yuan1,2,*, Sicun Zhong1,3,*, Yijia Wu1,3, Man Chen4, Ying Wang1,3, Yinping Cao5, Jia Chen1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1689-1710, 2025, DOI:10.32604/fdmp.2025.065151 - 31 July 2025

    Abstract Field development practices in many shale gas regions (e.g., the Changning region) have revealed a persistent issue of suboptimal reserve utilization, particularly in areas where the effective drainage width of production wells is less than half the inter-well spacing (typically 400–500 m). To address this, infill drilling has become a widely adopted and effective strategy for enhancing reservoir contact and mobilizing previously untapped reserves. However, this approach has introduced significant inter-well interference, complicating production dynamics and performance evaluation. The two primary challenges hindering efficient deployment of infill wells are: (1) the quantitative assessment of hydraulic… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Stress and Toughness Contrast Effects on the Vertical Propagation of Fluid-Driven Fractures in Shale Reservoirs

    Manqing Qian*, Xiyu Chen, Yongming Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1353-1377, 2025, DOI:10.32604/fdmp.2025.061652 - 30 June 2025

    Abstract Shale reservoirs are characterized by numerous geological discontinuities, such as bedding planes, and exhibit pronounced heterogeneity across rock layers separated by these planes. Bedding planes often possess distinct mechanical properties compared to the surrounding rock matrix, particularly in terms of damage and fracture behavior. Consequently, vertical propagation of hydraulic fractures is influenced by both bedding planes and the heterogeneity. In this study, a numerical investigation into the height growth of hydraulic fractures was conducted using the finite element method, incorporating zero-thickness cohesive elements. The analysis explored the effects of bedding planes, toughness contrasts between layers,… More >

Displaying 1-10 on page 1 of 59. Per Page