Qi He1, Wenlong Li1, Zengzhou Hao2, Guohua Liu3, Dongmei Huang1, Wei Song1,*, Huifang Xu4, Fayez Alqahtani5, Jeong-Uk Kim6
CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 51-67, 2022, DOI:10.32604/cmc.2022.026771
- 18 May 2022
Abstract Sea surface temperature (SST) is closely related to global climate change, ocean ecosystem, and ocean disaster. Accurate prediction of SST is an urgent and challenging task. With a vast amount of ocean monitoring data are continually collected, data-driven methods for SST time-series prediction show promising results. However, they are limited by neglecting complex interactions between SST and other ocean environmental factors, such as air temperature and wind speed. This paper uses multi-factor time series SST data to propose a sequence-to-sequence network with two-module attention (TMA-Seq2seq) for long-term time series SST prediction. Specifically, TMA-Seq2seq is an… More >