Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Enhancing Septic Shock Detection through Interpretable Machine Learning

    Md Mahfuzur Rahman1,*, Md Solaiman Chowdhury2, Mohammad Shorfuzzaman3, Lutful Karim4, Md Shafiullah5, Farag Azzedin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2501-2525, 2024, DOI:10.32604/cmes.2024.055065 - 31 October 2024

    Abstract This article presents an innovative approach that leverages interpretable machine learning models and cloud computing to accelerate the detection of septic shock by analyzing electronic health data. Unlike traditional methods, which often lack transparency in decision-making, our approach focuses on early detection, offering a proactive strategy to mitigate the risks of sepsis. By integrating advanced machine learning algorithms with interpretability techniques, our method not only provides accurate predictions but also offers clear insights into the factors influencing the model’s decisions. Moreover, we introduce a preference-based matching algorithm to evaluate disease severity, enabling timely interventions guided… More >

  • Open Access

    ARTICLE

    Sepsis Prediction Using CNNBDLSTM and Temporal Derivatives Feature Extraction in the IoT Medical Environment

    Sapiah Sakri1, Shakila Basheer1, Zuhaira Muhammad Zain1, Nurul Halimatul Asmak Ismail2,*, Dua’ Abdellatef Nassar1, Manal Abdullah Alohali1, Mais Ayman Alharaki1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1157-1185, 2024, DOI:10.32604/cmc.2024.048051 - 25 April 2024

    Abstract Background: Sepsis, a potentially fatal inflammatory disease triggered by infection, carries significant health implications worldwide. Timely detection is crucial as sepsis can rapidly escalate if left undetected. Recent advancements in deep learning (DL) offer powerful tools to address this challenge. Aim: Thus, this study proposed a hybrid CNNBDLSTM, a combination of a convolutional neural network (CNN) with a bi-directional long short-term memory (BDLSTM) model to predict sepsis onset. Implementing the proposed model provides a robust framework that capitalizes on the complementary strengths of both architectures, resulting in more accurate and timelier predictions. Method: The sepsis prediction… More >

Displaying 1-10 on page 1 of 2. Per Page