Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (126)
  • Open Access

    ARTICLE

    Integrating Ontology-Based Approaches with Deep Learning Models for Fine-Grained Sentiment Analysis

    Longgang Zhao1, Seok-Won Lee2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1855-1877, 2024, DOI:10.32604/cmc.2024.056215 - 15 October 2024

    Abstract Although sentiment analysis is pivotal to understanding user preferences, existing models face significant challenges in handling context-dependent sentiments, sarcasm, and nuanced emotions. This study addresses these challenges by integrating ontology-based methods with deep learning models, thereby enhancing sentiment analysis accuracy in complex domains such as film reviews and restaurant feedback. The framework comprises explicit topic recognition, followed by implicit topic identification to mitigate topic interference in subsequent sentiment analysis. In the context of sentiment analysis, we develop an expanded sentiment lexicon based on domain-specific corpora by leveraging techniques such as word-frequency analysis and word embedding. More >

  • Open Access

    ARTICLE

    Cross-Target Stance Detection with Sentiments-Aware Hierarchical Attention Network

    Kelan Ren, Facheng Yan, Honghua Chen, Wen Jiang, Bin Wei, Mingshu Zhang*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 789-807, 2024, DOI:10.32604/cmc.2024.055624 - 15 October 2024

    Abstract The task of cross-target stance detection faces significant challenges due to the lack of additional background information in emerging knowledge domains and the colloquial nature of language patterns. Traditional stance detection methods often struggle with understanding limited context and have insufficient generalization across diverse sentiments and semantic structures. This paper focuses on effectively mining and utilizing sentiment-semantics knowledge for stance knowledge transfer and proposes a sentiment-aware hierarchical attention network (SentiHAN) for cross-target stance detection. SentiHAN introduces an improved hierarchical attention network designed to maximize the use of high-level representations of targets and texts at various… More > Graphic Abstract

    Cross-Target Stance Detection with Sentiments-Aware Hierarchical Attention Network

  • Open Access

    REVIEW

    Unlocking the Potential: A Comprehensive Systematic Review of ChatGPT in Natural Language Processing Tasks

    Ebtesam Ahmad Alomari*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 43-85, 2024, DOI:10.32604/cmes.2024.052256 - 20 August 2024

    Abstract As Natural Language Processing (NLP) continues to advance, driven by the emergence of sophisticated large language models such as ChatGPT, there has been a notable growth in research activity. This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain. This review paper systematically investigates the role of ChatGPT in diverse NLP tasks, including information extraction, Name Entity Recognition (NER), event extraction, relation extraction, Part of Speech (PoS) tagging, text classification, sentiment analysis, emotion recognition and text annotation. The novelty of this work lies in its… More >

  • Open Access

    ARTICLE

    Sentiment Analysis Using E-Commerce Review Keyword-Generated Image with a Hybrid Machine Learning-Based Model

    Jiawen Li1,2, Yuesheng Huang1, Yayi Lu1, Leijun Wang1,*, Yongqi Ren1, Rongjun Chen1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1581-1599, 2024, DOI:10.32604/cmc.2024.052666 - 18 July 2024

    Abstract In the context of the accelerated pace of daily life and the development of e-commerce, online shopping is a mainstream way for consumers to access products and services. To understand their emotional expressions in facing different shopping experience scenarios, this paper presents a sentiment analysis method that combines the e-commerce review keyword-generated image with a hybrid machine learning-based model, in which the Word2Vec-TextRank is used to extract keywords that act as the inputs for generating the related images by generative Artificial Intelligence (AI). Subsequently, a hybrid Convolutional Neural Network and Support Vector Machine (CNN-SVM) model… More >

  • Open Access

    ARTICLE

    DeBERTa-GRU: Sentiment Analysis for Large Language Model

    Adel Assiri1, Abdu Gumaei2,*, Faisal Mehmood3,*, Touqeer Abbas4, Sami Ullah5

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4219-4236, 2024, DOI:10.32604/cmc.2024.050781 - 20 June 2024

    Abstract Modern technological advancements have made social media an essential component of daily life. Social media allow individuals to share thoughts, emotions, and ideas. Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive, negative, neutral, or any other personal emotion to understand the sentiment context of the text. Sentiment analysis is essential in business and society because it impacts strategic decision-making. Sentiment analysis involves challenges due to lexical variation, an unlabeled dataset, and text distance correlations. The execution time increases due to the sequential processing of the sequence models. However,… More >

  • Open Access

    ARTICLE

    Research on Sarcasm Detection Technology Based on Image-Text Fusion

    Xiaofang Jin1, Yuying Yang1,*, Yinan Wu1, Ying Xu2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5225-5242, 2024, DOI:10.32604/cmc.2024.050384 - 20 June 2024

    Abstract The emergence of new media in various fields has continuously strengthened the social aspect of social media. Netizens tend to express emotions in social interactions, and many people even use satire, metaphors, and other techniques to express some negative emotions, it is necessary to detect sarcasm in social comment data. For sarcasm, the more reference data modalities used, the better the experimental effect. This paper conducts research on sarcasm detection technology based on image-text fusion data. To effectively utilize the features of each modality, a feature reconstruction output algorithm is proposed. This algorithm is based… More >

  • Open Access

    ARTICLE

    Developing Lexicons for Enhanced Sentiment Analysis in Software Engineering: An Innovative Multilingual Approach for Social Media Reviews

    Zohaib Ahmad Khan1, Yuanqing Xia1,*, Ahmed Khan2, Muhammad Sadiq2, Mahmood Alam3, Fuad A. Awwad4, Emad A. A. Ismail4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2771-2793, 2024, DOI:10.32604/cmc.2024.046897 - 15 May 2024

    Abstract Sentiment analysis is becoming increasingly important in today’s digital age, with social media being a significant source of user-generated content. The development of sentiment lexicons that can support languages other than English is a challenging task, especially for analyzing sentiment analysis in social media reviews. Most existing sentiment analysis systems focus on English, leaving a significant research gap in other languages due to limited resources and tools. This research aims to address this gap by building a sentiment lexicon for local languages, which is then used with a machine learning algorithm for efficient sentiment analysis.… More >

  • Open Access

    ARTICLE

    Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning

    Aizaz Ali1, Maqbool Khan1,2, Khalil Khan3, Rehan Ullah Khan4, Abdulrahman Aloraini4,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 713-733, 2024, DOI:10.32604/cmc.2024.048712 - 25 April 2024

    Abstract Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understanding public opinion and user sentiment across diverse languages. While numerous scholars conduct sentiment analysis in widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grappling with resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language, characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu, Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguistic features,… More >

  • Open Access

    ARTICLE

    RUSAS: Roman Urdu Sentiment Analysis System

    Kazim Jawad1, Muhammad Ahmad2, Majdah Alvi3, Muhammad Bux Alvi3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1463-1480, 2024, DOI:10.32604/cmc.2024.047466 - 25 April 2024

    Abstract Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify the sentiments in the opinionated text data. People share their judgments, reactions, and feedback on the internet using various languages. Urdu is one of them, and it is frequently used worldwide. Urdu-speaking people prefer to communicate on social media in Roman Urdu (RU), an English scripting style with the Urdu language dialect. Researchers have developed versatile lexical resources for features-rich comprehensive languages, but limited linguistic resources are available to facilitate the sentiment classification of Roman Urdu. This effort encompasses extracting… More >

  • Open Access

    ARTICLE

    Aspect-Level Sentiment Analysis Based on Deep Learning

    Mengqi Zhang1, Jiazhao Chai2, Jianxiang Cao3, Jialing Ji3, Tong Yi4,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3743-3762, 2024, DOI:10.32604/cmc.2024.048486 - 26 March 2024

    Abstract In recent years, deep learning methods have developed rapidly and found application in many fields, including natural language processing. In the field of aspect-level sentiment analysis, deep learning methods can also greatly improve the performance of models. However, previous studies did not take into account the relationship between user feature extraction and contextual terms. To address this issue, we use data feature extraction and deep learning combined to develop an aspect-level sentiment analysis method. To be specific, we design user comment feature extraction (UCFE) to distill salient features from users’ historical comments and transform them More >

Displaying 1-10 on page 1 of 126. Per Page