Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Droplet Self-Driven Characteristics on Wedge-Shaped Surface with Composite Gradients: A Molecular Dynamics Study

    Haowei Hu1,2,*, Xinnuo Chen1, Qi Wang1, Qin Li3, Dong Niu4, Mu Du5,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1071-1085, 2024, DOI:10.32604/fhmt.2024.054218 - 30 August 2024

    Abstract The self-driven behavior of droplets on a functionalized surface, coupled with wetting gradient and wedge patterns, is systematically investigated using molecular dynamics (MD) simulations. The effects of key factors, including wedge angle, wettability, and wetting gradient, on the droplet self-driving effect is revealed from the nanoscale. Results indicate that the maximum velocity of droplets on hydrophobic wedge-shaped surfaces increases with the wedge angle, accompanied by a rapid attenuation of driving force; however, the average velocity decreases with the increased wedge angle. Conversely, droplet movement on hydrophilic wedge-shaped surfaces follows the opposite trend, particularly in terms… More >

  • Open Access

    PROCEEDINGS

    Self-Driven Droplet on the Bilayer Two-Dimensional Materials and Nanoscale Channel with Controllable Gradient Wettability

    Hongfei Ye1,*, Chenguang Yin1, Jian Wang1, Yonggang Zheng1, Hongwu Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09741

    Abstract The wetting behavior is ubiquitous in natural phenomenon as well as engineering application. As an intrinsic property of solid surface, the wettability with a controllable gradient has been an attractive issue with a wide application in various fields, including microfluidic devices, self-driven transport, biotechnologies, etc. Generally, it often requires elaborate design of microstructure or its response under the electrical, thermal, optical, pH stimuli, etc. However, the relevant complex underlying mechanism makes it difficult to construct quantitative relations between the wettability and the external field for the fine design. In this work, based on the bilayer… More >

Displaying 1-10 on page 1 of 2. Per Page