Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Gas-Water Production of a Continental Tight-Sandstone Gas Reservoir under Different Fracturing Conditions

    Yan Liu1, Tianli Sun2, Bencheng Wang1,*, Yan Feng2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1165-1180, 2024, DOI:10.32604/fdmp.2023.041852 - 27 June 2024

    Abstract A numerical model of hydraulic fracture propagation is introduced for a representative reservoir (Yuanba continental tight sandstone gas reservoir in Northeast Sichuan). Different parameters are considered, i.e., the interlayer stress difference, the fracturing discharge rate and the fracturing fluid viscosity. The results show that these factors affect the gas and water production by influencing the fracture size. The interlayer stress difference can effectively control the fracture height. The greater the stress difference, the smaller the dimensionless reconstruction volume of the reservoir, while the flowback rate and gas production are lower. A large displacement fracturing construction More >

  • Open Access

    ARTICLE

    Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs

    Fang Li1,*, Juan Wu1, Haiyong Yi2, Lihong Wu2, Lingyun Du1, Yuan Zeng1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1015-1030, 2024, DOI:10.32604/fdmp.2023.043256 - 07 June 2024

    Abstract Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors, such as strong reservoir heterogeneity and seepage mechanisms. In this study, the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments. On the basis of these experiments, a numerical simulation model (based on the special seepage mechanism) and an inverse dynamic reserve algorithm (with different equivalent drainage areas) were developed. The well spacing ranges of Classes I, II, and III wells in the Q gas More > Graphic Abstract

    Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs

  • Open Access

    ARTICLE

    A Data-Oriented Method to Optimize Hydraulic Fracturing Parameters of Tight Sandstone Reservoirs

    Zhengrong Chen*, Mao Jiang, Chuanzhi Ai, Jianshu Wu, Xin Xie

    Energy Engineering, Vol.121, No.6, pp. 1657-1669, 2024, DOI:10.32604/ee.2024.030222 - 21 May 2024

    Abstract Based on the actual data collected from the tight sandstone development zone, correlation analysis using the Spearman method was conducted to determine the main factors influencing the gas production rate of tight sandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracture propagation and production was completed. Based on data analysis, the hydraulic fracture parameters were optimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influence of geological and engineering factors in the X1 and X2 development zones in the study area differs significantly. Therefore, it is… More >

  • Open Access

    ARTICLE

    Experimental Investigation on Fracturing Behaviors after Liquid Nitrogen Pre-Injection in High-Temperature Sandstone

    Decheng Li1, Yan Zhang2, Dongdong Ma2, Haozhe Geng1, Yu Wu1,2,*

    Energy Engineering, Vol.120, No.11, pp. 2503-2516, 2023, DOI:10.32604/ee.2023.041803 - 31 October 2023

    Abstract The fracturing process of sandstone is inherently complex due to its loose internal structure and deformation adaptability. Liquid nitrogen pre-injection has emerged as a promising approach to damage reservoir rocks, effectively reducing fracture pressure and establishing intricate fracture networks, thus offering a potential solution for reservoir reconstruction. To unravel the fundamental mechanisms governing sandstone fracturing behaviors following liquid nitrogen pre-injection, sandstone fracturing experiments were conducted under varying durations of liquid nitrogen injection, rock temperature, and in-situ stress conditions. The experiments showcased the evolution of injection pressure and fracture characteristics under different testing conditions, complemented by… More >

  • Open Access

    PROCEEDINGS

    Spontaneous Imbibition Considering Fractal Theory and Dynamic Contact Angle in Tight Sandstone

    Jingjing Ping1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.08787

    Abstract In the process of tight oil reservoir development, there are a lot of spontaneous imbibition phenomena which are beneficial to achieving the purpose of enhancing oil recovery. It is of great significance to study the law of spontaneous imbibition of oil and water at the pore scale of tight sandstone. In this paper, we study the law of spontaneous imbibition at the pore scale of tight sandstone by combining theoretical research and numerical simulation. Based on the fractal theory and the capillary bundle model, we establish a mathematical model of spontaneous imbibition in porous media More >

  • Open Access

    ARTICLE

    Tight Sandstone Image Augmentation for Image Identification Using Deep Learning

    Dongsheng Li, Chunsheng Li*, Kejia Zhang, Tao Liu, Fang Liu, Jingsong Yin, Mingyue Liao

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1209-1231, 2023, DOI:10.32604/csse.2023.034395 - 26 May 2023

    Abstract Intelligent identification of sandstone slice images using deep learning technology is the development trend of mineral identification, and accurate mineral particle segmentation is the most critical step for intelligent identification. A typical identification model requires many training samples to learn as many distinguishable features as possible. However, limited by the difficulty of data acquisition, the high cost of labeling, and privacy protection, this has led to a sparse sample number and cannot meet the training requirements of deep learning image identification models. In order to increase the number of samples and improve the training effect… More >

  • Open Access

    ARTICLE

    A Study of the Structural Evolution and Strength Damage Mechanisms of Pisha-Sandstone Cement Soil Modified with Fly Ash

    Jian Yang, Xiaoli Li*, Hui Wang, Kaiqiang Geng

    Journal of Renewable Materials, Vol.9, No.12, pp. 2241-2260, 2021, DOI:10.32604/jrm.2021.015565 - 22 June 2021

    Abstract In the present study, in order to investigate the effects of fly ash on the structural evolution and strength damage mechanism of Pisha-sandstone cement soil, unconfined compressive strength tests of Pisha-sandstone cement soil with different fly ash content levels and various ages were carried out. The apparent morphology, microstructures, and chemical compositions of the samples were observed and analyzed using ultra-depth three-dimensional microscopy, scanning electron microscopy, and XRD methods. The results revealed that the unconfined compressive strength levels of Pisha-sandstone cement soil samples displayed increasing trends with the increases in fly ash content and age.… More > Graphic Abstract

    A Study of the Structural Evolution and Strength Damage Mechanisms of Pisha-Sandstone Cement Soil Modified with Fly Ash

  • Open Access

    ARTICLE

    Quantifying the Mechanical Properties of White Sandstone Based on Computer Fractal Theory

    Yong Wang, Yongyan Wang*, Nan Qin, Sa Huang, Le Chang, Shunzheng Hou

    Computer Systems Science and Engineering, Vol.39, No.1, pp. 121-131, 2021, DOI:10.32604/csse.2021.014464 - 10 June 2021

    Abstract The work presented in this paper was conducted to quantify the relationship between the pore characteristics and mechanical properties of white sandstone. The study include tests carried out under the coupling effects of chemical corrosion, temperature, nuclear magnetic resonance, and mechanical tests. Computer fractal theory was employed to describe and quantify the characteristics of the growth of pores in white sandstone under the same coupling effect. A custom developed program code, in the MATLAB software platform, was used for calculating the growths of the pores in white sandstone when subjected to coupling effects. The correlation… More >

  • Open Access

    ARTICLE

    Experimental Simulation and Numerical Modeling of Deformation and Damage Evolution of Pre-Holed Sandstones After Heat Treatment

    Shuo Yang1, Yuanhai Li1, 2, ∗, Xiaojie Tang1, 2, Jinshan Liu1, 2

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 633-659, 2020, DOI:10.32604/cmes.2020.07919 - 01 February 2020

    Abstract The deformation and damage evolution of sandstone after heat treatment greatly influence the efficient and safe development of deep geothermal energy extraction. To investigate this issue, laboratory confined compression tests and numerical simulations were conducted on pre-holed sandstone specimens after heat treatment. The laboratory test results show that the failure modes are closely related to the heat treatment temperature, with increasing treatment temperature, the failure modes change from mixed and shear modes to a splitting mode. The cracks always initiate from the sidewalls of the hole and then propagate. The failure process inside the hole… More >

  • Open Access

    ARTICLE

    Research on the Damage of Porosityand Permeabilitydue to Perforation on Sandstone in the Compaction Zone

    Shifeng Xue1,2, Xiuxing Zhu1,2, Lin Zhang3, Shenghu Zhu4, Guigen Ye1,5

    CMC-Computers, Materials & Continua, Vol.51, No.1, pp. 21-42, 2016, DOI:10.3970/cmc.2016.051.021

    Abstract A perforating hole is a channel through which the oil and gas in a reservoir pass into the production well bore. During the process of perforating due to explosion, the surrounding sandstone will be damaged to a certain extent, which will increase the well bore skin and lead to the decrease of production consequently. In this work a mechanical model of perforating damage is developed to describe the influences of perforating due to explosion on the porosity and permeability of the surrounding sandstone near the compaction zone. Based on this developed model, the important data… More >

Displaying 1-10 on page 1 of 10. Per Page