Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    HWD-YOLO: A New Vision-Based Helmet Wearing Detection Method

    Licheng Sun1, Heping Li2,3, Liang Wang1,4,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4543-4560, 2024, DOI:10.32604/cmc.2024.055115 - 12 September 2024

    Abstract It is crucial to ensure workers wear safety helmets when working at a workplace with a high risk of safety accidents, such as construction sites and mine tunnels. Although existing methods can achieve helmet detection in images, their accuracy and speed still need improvements since complex, cluttered, and large-scale scenes of real workplaces cause server occlusion, illumination change, scale variation, and perspective distortion. So, a new safety helmet-wearing detection method based on deep learning is proposed. Firstly, a new multi-scale contextual aggregation module is proposed to aggregate multi-scale feature information globally and highlight the details… More >

  • Open Access

    ARTICLE

    Real-time Safety Helmet-wearing Detection Based on Improved YOLOv5

    Yanman Li1, Jun Zhang1, Yang Hu1, Yingnan Zhao2,*, Yi Cao3

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1219-1230, 2022, DOI:10.32604/csse.2022.028224 - 09 May 2022

    Abstract Safety helmet-wearing detection is an essential part of the intelligent monitoring system. To improve the speed and accuracy of detection, especially small targets and occluded objects, it presents a novel and efficient detector model. The underlying core algorithm of this model adopts the YOLOv5 (You Only Look Once version 5) network with the best comprehensive detection performance. It is improved by adding an attention mechanism, a CIoU (Complete Intersection Over Union) Loss function, and the Mish activation function. First, it applies the attention mechanism in the feature extraction. The network can learn the weight of… More >

  • Open Access

    ARTICLE

    Safety Helmet Wearing Detection in Aerial Images Using Improved YOLOv4

    Wei Chen1, Mi Liu1,*, Xuhong Zhou2, Jiandong Pan3, Haozhi Tan4

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3159-3174, 2022, DOI:10.32604/cmc.2022.026664 - 29 March 2022

    Abstract In construction, it is important to check whether workers wear safety helmets in real time. We proposed using an unmanned aerial vehicle (UAV) to monitor construction workers in real time. As the small target of aerial photography poses challenges to safety-helmet-wearing detection, we proposed an improved YOLOv4 model to detect the helmet-wearing condition in aerial photography: (1) By increasing the dimension of the effective feature layer of the backbone network, the model's receptive field is reduced, and the utilization rate of fine-grained features is improved. (2) By introducing the cross stage partial (CSP) structure into… More >

Displaying 1-10 on page 1 of 3. Per Page