Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    GL-YOLOv5: An Improved Lightweight Non-Dimensional Attention Algorithm Based on YOLOv5

    Yuefan Liu, Ducheng Zhang, Chen Guo*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3281-3299, 2024, DOI:10.32604/cmc.2024.057294 - 18 November 2024

    Abstract Craniocerebral injuries represent the primary cause of fatalities among riders involved in two-wheeler accidents; nevertheless, the prevalence of helmet usage among these riders remains alarmingly low. Consequently, the accurate identification of riders who are wearing safety helmets is of paramount importance. Current detection algorithms exhibit several limitations, including inadequate accuracy, substantial model size, and suboptimal performance in complex environments with small targets. To address these challenges, we propose a novel lightweight detection algorithm, termed GL-YOLOv5, which is an enhancement of the You Only Look Once version 5 (YOLOv5) framework. This model incorporates a Global DualPooling… More >

  • Open Access

    ARTICLE

    Real-Time Safety Helmet Detection Using Yolov5 at Construction Sites

    Kisaezehra1, Muhammad Umer Farooq1,*, Muhammad Aslam Bhutto2, Abdul Karim Kazi1

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 911-927, 2023, DOI:10.32604/iasc.2023.031359 - 29 September 2022

    Abstract The construction industry has always remained the economic and social backbone of any country in the world where occupational health and safety (OHS) is of prime importance. Like in other developing countries, this industry pays very little, rather negligible attention to OHS practices in Pakistan, resulting in the occurrence of a wide variety of accidents, mishaps, and near-misses every year. One of the major causes of such mishaps is the non-wearing of safety helmets (hard hats) at construction sites where falling objects from a height are unavoidable. In most cases, this leads to serious brain… More >

  • Open Access

    ARTICLE

    Algorithm of Helmet Wearing Detection Based on AT-YOLO Deep Mode

    Qingyang Zhou1, Jiaohua Qin1,*, Xuyu Xiang1, Yun Tan1, Neal N. Xiong2

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 159-174, 2021, DOI:10.32604/cmc.2021.017480 - 04 June 2021

    Abstract The existing safety helmet detection methods are mainly based on one-stage object detection algorithms with high detection speed to reach the real-time detection requirements, but they can’t accurately detect small objects and objects with obstructions. Therefore, we propose a helmet detection algorithm based on the attention mechanism (AT-YOLO). First of all, a channel attention module is added to the YOLOv3 backbone network, which can adaptively calibrate the channel features of the direction to improve the feature utilization, and a spatial attention module is added to the neck of the YOLOv3 network to capture the correlation… More >

Displaying 1-10 on page 1 of 3. Per Page