Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    MicroRNA-21 Regulates the Proliferation, Differentiation, and Apoptosis of Human Renal Cell Carcinoma Cells by the mTOR-STAT3 Signaling Pathway

    Tao Liang, Xiao-Yong Hu, Yong-Hui Li, Bin-Qiang Tian, Zuo-Wei Li, Qiang Fu

    Oncology Research, Vol.24, No.5, pp. 371-380, 2016, DOI:10.3727/096504016X14685034103356

    Abstract MicroRNA-21 (miRNA-21), a kind of short, noncoding RNAs, functioned as a tumor marker and was upregulated in renal cell carcinoma (RCC). However, the underlying mechanisms of miRNA-21 in RCC were uncertain. Therefore, the effects and mechanisms of miRNA-21 on the proliferation, differentiation, and apoptosis of cultured human RCC cells were further investigated in this study. After slicing miRNA-21 in RCC cells, the viability, mRNA expression of C/EBPα and PPARγ, caspase 3 activity, and protein expression of mTOR, STAT3, and pSTAT3 were determined. It was found that knockdown of miRNA-21 downregulated the optical density (OD) value More >

  • Open Access

    ARTICLE

    Basic Transcription Factor 3 Is Required for Proliferation and Epithelial–Mesenchymal Transition via Regulation of FOXM1 and JAK2/STAT3 Signaling in Gastric Cancer

    De-Zhong Zhang*, Bing-He Chen*, Lan-Fang Zhang, Ming-Kun Cheng, Xiang-Jie Fang*, Xin-Jun Wu*

    Oncology Research, Vol.25, No.9, pp. 1453-1462, 2017, DOI:10.3727/096504017X14886494526344

    Abstract Gastric cancer (GC) is the most common epithelial malignancy worldwide. Basic transcription factor 3 (BTF3) plays a crucial role in the regulation of various biological processes. We designed experiments to investigate the molecular mechanism underlying the role of BTF3 in GC cell proliferation and metastasis. We confirmed that BTF3 expression was decreased in GC tissues and several GC cell lines. Lentivirus-mediated downregulation of BTF3 reduced cell proliferation, induced S and G2/M cell cycle arrest, and increased apoptosis. Knockdown of BTF3 significantly reduced the expression of Forkhead box M1 (FOXM1). Upregulation of FOXM1 significantly inhibited the decrease… More >

  • Open Access

    ARTICLE

    Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling

    Huan Shen*1, Li Liu†1, Yongjin Yang*, Wenxing Xun, Kewen Wei, Guang Zeng

    Oncology Research, Vol.25, No.7, pp. 1141-1152, 2017, DOI:10.3727/096504017X14841698396784

    Abstract Oral squamous cell carcinoma (OSCC) is a common cancer of the head and neck. Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid. The present study was designed to explore the effects of BA on OSCC KB cell proliferation in vitro and on implanted tumor growth in vivo and to examine the possible molecular mechanisms. The results showed that BA dose-dependently inhibited KB cell proliferation and decreased implanted tumor volume. In addition, BA significantly promoted mitochondrial apoptosis, as reflected by an increase in TUNEL+ cells and the activities of caspases 3 and 9, an increase… More >

  • Open Access

    ARTICLE

    Overexpression of Human Papillomavirus Type 16 Oncoproteins Enhances Epithelial–Mesenchymal Transition via STAT3 Signaling Pathway in Non-Small Cell Lung Cancer Cells

    Wenzhang Zhang*1, Xin Wu†1, Liang Hu*, Yuefan Ma*, Zihan Xiu*, Bingyu Huang*, Yun Feng*, Xudong Tang*†‡

    Oncology Research, Vol.25, No.5, pp. 843-852, 2017, DOI:10.3727/096504016X14813880882288

    Abstract The human papillomavirus (HPV) infection may be associated with the development and progression of nonsmall cell lung cancer (NSCLC). However, the role of HPV-16 oncoproteins in the development and progression of NSCLC is not completely clear. Epithelial–mesenchymal transition (EMT), a crucial step for invasion and metastasis, plays a key role in the development and progression of NSCLC. Here we explored the effect of HPV-16 oncoproteins on EMT and the underlying mechanisms. NSCLC cell lines, A549 and NCI-H460, were transiently transfected with the EGFP-N1-HPV-16 E6 or E7 plasmid. Real-time PCR and Western blot analysis were performed… More >

  • Open Access

    ARTICLE

    CKLF-Like MARVEL Transmembrane Domain-Containing Member 3 (CMTM3) Inhibits the Proliferation and Tumorigenisis in Hepatocellular Carcinoma Cells

    Wujun Li*, Shaobo Zhang

    Oncology Research, Vol.25, No.2, pp. 285-293, 2017, DOI:10.3727/096504016X14732523471442

    Abstract The CKLF-like MARVEL transmembrane domain-containing 3 (CMTM3), a member of the CMTM family, was found in several human tumors and plays an important role in the development and progression of tumors. However, the role of CMTM3 in hepatocellular carcinoma (HCC) remains largely unknown. Thus, in the present study, we explored its expression pattern in human HCC cell lines, as well as its functions in HCC cells. Our results demonstrated that the expression of CMTM3 is lowly expressed in HCC cell lines. In vitro, we found that overexpression of CMTM3 obviously inhibited the proliferation, invasion, and More >

  • Open Access

    ARTICLE

    Galectin 2 regulates JAK/STAT3 signaling activity to modulate oral squamous cell carcinoma proliferation and migration in vitro

    XINRU FENG1, LI XIAO2,*

    BIOCELL, Vol.48, No.5, pp. 793-801, 2024, DOI:10.32604/biocell.2024.048395

    Abstract Background: Galectin 2 (LGALS2) is a protein previously reported to serve as a mediator of disease progression in a range of cancers. The function of LGALS2 in oral squamous cell carcinoma (OSCC), however, has yet to be explored, prompting the present study to address this literature gap. Methods: Overall, 144 paired malignant tumor tissues and paracancerous OSCC patient samples were harvested and the LGALS2 expression levels were examined through qPCR and western immunoblotting. The LGALS2 coding sequence was introduced into the pcDNA3.0 vector, to enable the overexpression of this gene, while an LGALS2-specific shRNA and… More >

  • Open Access

    ARTICLE

    Metochalcone induces senescence-associated secretory phenotype via JAK2/STAT3 pathway in breast cancer

    JIANBO ZHOU1,2,3, FENG WAN2,4, BIN XIAO5, XIN LI1, CHENG PENG2,*, FU PENG1,3,*

    Oncology Research, Vol.32, No.5, pp. 943-953, 2024, DOI:10.32604/or.2023.044775

    Abstract Breast and lung cancers are the leading causes of mortality and most frequently diagnosed cancers in women and men, respectively, worldwide. Although the antitumor activity of chalcones has been extensively studied, the molecular mechanisms of isoliquiritigenin analog 2', 4', 4-trihydroxychalcone (metochalcone; TEC) against carcinomas remain less well understood. In this study, we found that TEC inhibited cell proliferation of breast cancer BT549 cells and lung cancer A549 cells in a concentration-dependent manner. TEC induced cell cycle arrest in the S-phase, cell migration inhibition in vitro, and reduced tumor growth in vivo. Moreover, transcriptomic analysis revealed that TEC More > Graphic Abstract

    Metochalcone induces senescence-associated secretory phenotype via JAK2/STAT3 pathway in breast cancer

  • Open Access

    ARTICLE

    IL-17 induces NSCLC cell migration and invasion by elevating MMP19 gene transcription and expression through the interaction of p300-dependent STAT3-K631 acetylation and its Y705-phosphorylation

    WEN GE1,2,#, YA LI1,2,#, YUTING RUAN1,2, NINGXIA WU1,2, PEI MA3,4, TONGPENG XU3,4, YONGQIAN SHU3,4, YINGWEI WANG1,2, WEN QIU1,2, CHENHUI ZHAO3,4,*

    Oncology Research, Vol.32, No.4, pp. 625-641, 2024, DOI:10.32604/or.2023.031053

    Abstract The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer (NSCLC). Although researchers have disclosed that interleukin 17 (IL-17) can increase matrix metalloproteinases (MMPs) induction causing NSCLC cell metastasis, the underlying mechanism remains unclear. In the study, we found that IL-17 receptor A (IL-17RA), p300, p-STAT3, Ack-STAT3, and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17. p300, STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3, Ack-STAT3 and MMP19 level as well as the cell migration and invasion. Mechanism investigation revealed… More > Graphic Abstract

    IL-17 induces NSCLC cell migration and invasion by elevating MMP19 gene transcription and expression through the interaction of p300-dependent STAT3-K631 acetylation and its Y705-phosphorylation

  • Open Access

    ARTICLE

    LncRNA LOC103694972 promotes fibrosis of NRK-49F cells by regulating STAT3-dependent Smad/CTGF pathway via targeting miR-29c-3p

    YAN LI1, HUZHI CAI2, XIAOLING PENG3, YOUHUI LIU4, QINGYANG CHEN4, XIANGDONG LIN5, XINYU CHEN6,*

    BIOCELL, Vol.48, No.3, pp. 501-511, 2024, DOI:10.32604/biocell.2023.030854

    Abstract Background: Renal fibrosis is an important process in the development of chronic kidney disease. Understanding the pathogenesis and finding effective treatments for renal fibrosis is crucial. This study aims to investigate whether a newly discovered long non-coding RNA (lncRNA) called LOC103694972 could be a potential target for treating fibrosis of NRK-49F cells. Methods:: LncRNA Chip was used to identify differentially expressed lncRNAs between TGF-β1-induced NRK-49F cells and normal cells. The dual-luciferase assay confirmed the binding between miR-29c-3p and signal transducer and activator of transcription (STAT3), as well as between miR-29c-3p and lncRNA LOC103694972. Si-LOC103694972 and… More > Graphic Abstract

    LncRNA LOC103694972 promotes fibrosis of NRK-49F cells by regulating STAT3-dependent Smad/CTGF pathway via targeting miR-29c-3p

  • Open Access

    HOXB8 contributed to oxaliplatin chemo-resistance in colon cancer cells by activating STAT3

    LIANLI NI1,2,#, YUN YU1,2,#, HAN LIN1,2, WEISHAN ZHUGE2, LU TAO2, YIWEI SHEN2, RI CUI2,*, SHAOTANG LI1,2,*

    BIOCELL, Vol.47, No.10, pp. 2245-2254, 2023, DOI:10.32604/biocell.2023.030147

    Abstract Background: Homeobox B8 (HOXB8), a member of HOX family, plays a key role in the development of colorectal cancer (CRC). However, the function of HOXB8 in oxaliplatin (OXA) resistance in CRC is still unclear. This study investigated the role and precise molecular mechanism of HOXB8 in OXA-resistant CRC cells. Methods: The cell viability was measured by the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, and the colony forming ability was determined by colony formation assay. The silencing RNA (siRNA) approach was used to knockdown HOXB8 in CRC cells while the lentiviral transfection system was used to establish… More >

Displaying 1-10 on page 1 of 26. Per Page