Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Feature Selection with Optimal Stacked Sparse Autoencoder for Data Mining

    Manar Ahmed Hamza1,*, Siwar Ben Haj Hassine2, Ibrahim Abunadi3, Fahd N. Al-Wesabi2,4, Hadeel Alsolai5, Anwer Mustafa Hilal1, Ishfaq Yaseen1, Abdelwahed Motwakel1

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2581-2596, 2022, DOI:10.32604/cmc.2022.024764 - 29 March 2022

    Abstract Data mining in the educational field can be used to optimize the teaching and learning performance among the students. The recently developed machine learning (ML) and deep learning (DL) approaches can be utilized to mine the data effectively. This study proposes an Improved Sailfish Optimizer-based Feature Selection with Optimal Stacked Sparse Autoencoder (ISOFS-OSSAE) for data mining and pattern recognition in the educational sector. The proposed ISOFS-OSSAE model aims to mine the educational data and derive decisions based on the feature selection and classification process. Moreover, the ISOFS-OSSAE model involves the design of the ISOFS technique More >

Displaying 1-10 on page 1 of 1. Per Page