Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    The Non-Singular Fast Terminal Sliding Mode Control of Interior Permanent Magnet Synchronous Motor Based on Deep Flux Weakening Switching Point Tracking

    Xiangfei Li, Yang Yin, Yang Zhou, Wenchang Liu, Kaihui Zhao*

    Energy Engineering, Vol.120, No.2, pp. 277-297, 2023, DOI:10.32604/ee.2023.022461

    Abstract This paper presents a novel non-singular fast terminal sliding mode control (NFTSMC) based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior magnet synchronous motor (IPMSM) drive systems. The mathematical model of flux weakening (FW) control is established, and the deep flux weakening switching point is calculated accurately by analyzing the relationship between the torque curve and voltage decline curve. Next, a second-order NFTSMC is designed for the speed loop controller to ensure that the system converges to the equilibrium state in finite time. Then, an extended sliding mode disturbance… More > Graphic Abstract

    The Non-Singular Fast Terminal Sliding Mode Control of Interior Permanent Magnet Synchronous Motor Based on Deep Flux Weakening Switching Point Tracking

  • Open Access

    ARTICLE

    Neuro-Based Higher Order Sliding Mode Control for Perturbed Nonlinear Systems

    Ahmed M. Elmogy1,2,*, Wael M. Elawady2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 385-400, 2023, DOI:10.32604/iasc.2023.032349

    Abstract One of the great concerns when tackling nonlinear systems is how to design a robust controller that is able to deal with uncertainty. Many researchers have been working on developing such type of controllers. One of the most efficient techniques employed to develop such controllers is sliding mode control (SMC). However, the low order SMC suffers from chattering problem which harm the actuators of the control system and thus unsuitable to be used in many practical applications. In this paper, the drawbacks of low order traditional sliding mode control (FOTSMC) are resolved by presenting a novel adaptive radial basis function… More >

  • Open Access

    ARTICLE

    A Novel ANFIS Based SMC with Fractional Order PID Controller

    A. Jegatheesh1,*, M. Germin Nisha2, N. Kopperundevi3

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 745-760, 2023, DOI:10.32604/iasc.2023.028011

    Abstract Interacting The highest storage capacity of a circular tank makes it popular in process industries. Because of the varying surface area of the cross-sections of the tank, this two-tank level system has nonlinear characteristics. Controlling the flow rate of liquid is one of the most difficult challenges in the production process. This proposed effort is critical in preventing time delays and errors by managing the fluid level. Several scholars have explored and explored ways to reduce the problem of nonlinearity, but their techniques have not yielded better results. Different types of controllers with various techniques are implemented by the proposed… More >

  • Open Access

    ARTICLE

    miRNA–mRNA Profiling Reveals Prognostic Impact of SMC1A Expression in Acute Myeloid Leukemia

    Nikhil Gadewal*1, Rohit Kumar†1, Swapnil Aher, Anagha Gardane, Tarang Gaur, Ashok K. Varma*‡§, Navin Khattry, Syed K. Hasan†§¶

    Oncology Research, Vol.28, No.3, pp. 321-330, 2020, DOI:10.3727/096504020X15816752427321

    Abstract Acute myeloid leukemia (AML) with NPM1 mutation is a disease driving genetic alteration with good prognosis. Although it has been suggested that NPM1 mutation induces chemosensitivity in leukemic cells, the underlying cause for the better survival of NPM1 mutated patients is still not clear. Mutant NPM1 AML has a unique microRNA and their target gene (mRNA) signature compared to wild-type NPM1. Dynamic regulation of miRNA–mRNA has been reported to influence the prognostic outcome. In the present study, in silico expression data of miRNA and mRNA in AML patients was retrieved from genome data commons, and differentially expressed miRNA and mRNA… More >

  • Open Access

    ARTICLE

    An Adaptive Real-Time Third Order Sliding Mode Control for Nonlinear Systems

    Ahmed M. Elmogy1,2,*, Amany Sarhan2, Wael M. Elawady2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5629-5641, 2022, DOI:10.32604/cmc.2022.025247

    Abstract As most real world systems are significantly nonlinear in nature, developing robust controllers have attracted many researchers for decades. Robust controllers are the controllers that are able to cope with the inherent uncertainties of the nonlinear systems. Many control methods have been developed for this purpose. Sliding mode control (SMC) is one of the most commonly used methods in developing robust controllers. This paper presents a higher order SMC (HOSMC) approach to mitigate the chattering problem of the traditional SMC techniques. The developed approach combines a third order SMC with an adaptive PID (proportional, integral, derivative) sliding surface to overcome… More >

  • Open Access

    ARTICLE

    Model-Free Sliding Mode Control for PMSM Drive System Based on Ultra-Local Model

    Kaihui Zhao1,2, Wenchang Liu1, Tonghuan Yin3, Ruirui Zhou4, Wangke Dai1 and Gang Huang5,*

    Energy Engineering, Vol.119, No.2, pp. 767-780, 2022, DOI:10.32604/EE.2021.018617

    Abstract This paper presents a novel model-free sliding mode control (MFSMC) method to improve the speed response of permanent magnet synchronous machine (PMSM) drive system. The ultra-local model (ULM) is first derived based on the input and the output of the PMSM. Then, the novel MFSMC method is presented, and the controller is designed based on ULM and MFSMC. A sliding mode observer (SMO) is constructed to estimate the unknown part of the ULM. The estimated unknown part is feedbacked to MFSMC controller to perform compensation for parameter perturbations and external disturbances. Compared with the sliding mode control (SMC) method, the… More >

  • Open Access

    ARTICLE

    Invasive Stratified Mucin-Producing Carcinoma (ISMC) of the uterine cervix: An analysis of 6 cases with distinctive clinicopathological features

    TING LAN, SHENG QIN, XIAOJIN GONG, PING ZHENG, JIAXIN YAN, YANG LIU*

    BIOCELL, Vol.45, No.5, pp. 1313-1319, 2021, DOI:10.32604/biocell.2021.015923

    Abstract Invasive stratified mucin-producing carcinoma (ISMC) is a recently described histologic variant of high-risk human papillomavirus (HPV)-associated endocervical adenocarcinoma, as the putative invasive counterpart of the stratified mucin-producing intraepithelial lesion (SMILE). ISMC can display variable architectural patterns and usually coexists with other more conventional types of HPV-associated carcinomas, which makes diagnosis and differential diagnosis of ISMC is difficult for pathologists. Moreover, the prognosis of ISMC is still controversial. We analyzed 6 ISMCs with detailed pathological and clinical information. Intraepithelial lesion, including 1 high-grade squamous intraepithelial lesion and 1 SMILE, was found. Various architectures were observed (including nest, glandular, solid, trabecular, and… More >

  • Open Access

    ARTICLE

    SMConf: One-Size-Fit-Bunch, Automated Memory Capacity Configuration for In-Memory Data Analytic Platform

    Yi Liang1,*, Shaokang Zeng1, Xiaoxian Xu2, Shilu Chang1, Xing Su1

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1697-1717, 2021, DOI:10.32604/cmc.2020.012513

    Abstract Spark is the most popular in-memory processing framework for big data analytics. Memory is the crucial resource for workloads to achieve performance acceleration on Spark. The extant memory capacity configuration approach in Spark is to statically configure the memory capacity for workloads based on user’s specifications. However, without the deep knowledge of the workload’s system-level characteristics, users in practice often conservatively overestimate the memory utilizations of their workloads and require resource manager to grant more memory share than that they actually need, which leads to the severe waste of memory resources. To address the above issue, SMConf, an automated memory… More >

  • Open Access

    ARTICLE

    Oct-1 Mediates ACTH-Induced Proliferation of Vascular Smooth Muscle Cells

    Qian Xiao1, Xia Tang1, Yuanxiu Chen1, Han Bao1, Lizhi Gao1,2, Xiaobo Gong3,*, Ping Zhang1,4,*

    Molecular & Cellular Biomechanics, Vol.16, No.3, pp. 199-210, 2019, DOI:10.32604/mcb.2019.07107

    Abstract Adrenocorticotrophic hormone (ACTH), a 39-amino acid peptide hormone, has been reported in the appreciation of the proliferation of vascular smooth muscle cells (VSMCs), however, the mechanism in molecular scale supporting the appreciation remains to be elucidated. In this study, we observed that the protein expression levels of ACTH at 24 h after exposure to 15% cyclic stretch were significantly higher than that after 5% cyclic stretch. When VSMCs were treated with 1000 nM ACTH directly, Oct-1 and lamin B1 expression were both up-regulated associating with each other, and the presence of Oct-1 was found shuttling between the cytosol and nucleus.… More >

  • Open Access

    ARTICLE

    Traction Force Measurements of Human Aortic Smooth Muscle Cells Reveal a Motor-Clutch Behavior

    Petit Claudie1, Guignandon Alain2, Avril Stéphane1,*

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 87-108, 2019, DOI:10.32604/mcb.2019.06415

    Abstract The contractile behavior of smooth muscle cells (SMCs) in the aorta is an important determinant of growth, remodeling, and homeostasis. However, quantitative values of SMC basal tone have never been characterized precisely on individual SMCs. Therefore, to address this lack, we developed an in vitro technique based on Traction Force Microscopy (TFM). Aortic SMCs from a human lineage at low passages (4-7) were cultured 2 days in conditions promoting the development of their contractile apparatus and seeded on hydrogels of varying elastic modulus (1, 4, 12 and 25 kPa) with embedded fluorescent microspheres. After complete adhesion, SMCs were artificially detached… More >

Displaying 1-10 on page 1 of 11. Per Page  

Share Link