Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Long Noncoding RNA PVT1 Facilitates Cervical Cancer Progression via Negative Regulating of miR-424

    Ya-Li Gao*1, Zi-Shen Zhao†1, Ming-Yun Zhang*, Li-Jie Han*, Yu-Jin Dong, Bo Xu

    Oncology Research, Vol.25, No.8, pp. 1391-1398, 2017, DOI:10.3727/096504017X14881559833562

    Abstract Emerging evidence suggests that the long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) gene is involved in the pathogenesis of cervical cancer. However, the potential mechanism is rarely reported. Our study found that PVT1 was upregulated in cervical cancer tissue and cell lines. After transfecting PVT1 siRNA, the proliferation, migration, and invasion of cervical cancer cells were markedly decreased. miRNA expression profiles demonstrate that miR-424 was markedly downregulated in cervical cancer tissue. Bioinformatics analysis revealed that miR-424 was potentially targeted by PVT1, which was confirmed by dual-luciferase reporter assay. Pearson’s correlation analysis showed that More >

  • Open Access

    ARTICLE

    Performance Evaluation of Multi-Agent Reinforcement Learning Algorithms

    Abdulghani M. Abdulghani, Mokhles M. Abdulghani, Wilbur L. Walters, Khalid H. Abed*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 337-352, 2024, DOI:10.32604/iasc.2024.047017

    Abstract Multi-Agent Reinforcement Learning (MARL) has proven to be successful in cooperative assignments. MARL is used to investigate how autonomous agents with the same interests can connect and act in one team. MARL cooperation scenarios are explored in recreational cooperative augmented reality environments, as well as real-world scenarios in robotics. In this paper, we explore the realm of MARL and its potential applications in cooperative assignments. Our focus is on developing a multi-agent system that can collaborate to attack or defend against enemies and achieve victory with minimal damage. To accomplish this, we utilize the StarCraft… More >

  • Open Access

    ARTICLE

    Three-dimensional Numerical Simulation of Unsteady Marangoni Convection in the CZ Method using GSMAC-FEM

    Haruhiko Kohno, Takahiko Tanahashi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.2, pp. 155-170, 2001, DOI:10.3970/cmes.2001.002.155

    Abstract Three-dimensional (3D) unsteady numerical simulations are carried out by means of the finite element method (FEM) with the generalized simplified marker and cell (GSMAC) method in silicon melt with a non-deformable free surface with Prandtl number Pr = 1.8534 × 10-2, Marangoni number Ma = 0.0 - 6.2067 × 102, Grashof number Gr = 7.1104 × 106, and the aspect ratio As = 1.0 in the Czochralski (CZ) method. The flow state becomes unstable earlier by increasing the absolute value of the thermal coefficient of surface tension in the range of σT =0.0 - 1.5 × 10-5N/mK. Although… More >

Displaying 1-10 on page 1 of 3. Per Page