Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    A Restricted SIR Model with Vaccination Effect for the Epidemic Outbreaks Concerning COVID-19

    Ibtehal Alazman1, Kholoud Saad Albalawi1, Pranay Goswami2,*, Kuldeep Malik2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2409-2425, 2023, DOI:10.32604/cmes.2023.028674

    Abstract This paper presents a restricted SIR mathematical model to analyze the evolution of a contagious infectious disease outbreak (COVID-19) using available data. The new model focuses on two main concepts: first, it can present multiple waves of the disease, and second, it analyzes how far an infection can be eradicated with the help of vaccination. The stability analysis of the equilibrium points for the suggested model is initially investigated by identifying the matching equilibrium points and examining their stability. The basic reproduction number is calculated, and the positivity of the solutions is established. Numerical simulations More >

  • Open Access

    ARTICLE

    Numerical Analysis for the Effect of Irresponsible Immigrants on HIV/AIDS Dynamics

    Muhammad Tariq Ali1, Dumitru Baleanu2,3,4, Muhammad Rafiq5, Jan Awrejcewicz6, Nauman Ahmed7, Ali Raza8,*, Muhammad Sajid Iqbal9, Muhammad Ozair Ahmad7

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1479-1496, 2023, DOI:10.32604/iasc.2023.033157

    Abstract The human immunodeficiency viruses are two species of Lentivirus that infect humans. Over time, they cause acquired immunodeficiency syndrome, a condition in which progressive immune system failure allows life-threatening opportunistic infections and cancers to thrive. Human immunodeficiency virus infection came from a type of chimpanzee in Central Africa. Studies show that immunodeficiency viruses may have jumped from chimpanzees to humans as far back as the late 1800s. Over decades, human immunodeficiency viruses slowly spread across Africa and later into other parts of the world. The Susceptible-Infected-Recovered (SIR) models are significant in studying disease dynamics. In… More >

  • Open Access

    ARTICLE

    Modeling of Computer Virus Propagation with Fuzzy Parameters

    Reemah M. Alhebshi1, Nauman Ahmed2, Dumitru Baleanu3,4,5, Umbreen Fatima6,*, Fazal Dayan7, Muhammad Rafiq8,9, Ali Raza10, Muhammad Ozair Ahmad2, Emad E. Mahmoud11

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5663-5678, 2023, DOI:10.32604/cmc.2023.033319

    Abstract Typically, a computer has infectivity as soon as it is infected. It is a reality that no antivirus programming can identify and eliminate all kinds of viruses, suggesting that infections would persevere on the Internet. To understand the dynamics of the virus propagation in a better way, a computer virus spread model with fuzzy parameters is presented in this work. It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity, which depends on the quantity of virus. Considering… More >

  • Open Access

    ARTICLE

    Bio-Inspired Numerical Analysis of COVID-19 with Fuzzy Parameters

    F. M. Allehiany1, Fazal Dayan2,3,*, F. F. Al-Harbi4, Nesreen Althobaiti5, Nauman Ahmed2, Muhammad Rafiq6, Ali Raza7, Mawahib Elamin8

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3213-3229, 2022, DOI:10.32604/cmc.2022.025811

    Abstract Fuzziness or uncertainties arise due to insufficient knowledge, experimental errors, operating conditions and parameters that provide inaccurate information. The concepts of susceptible, infectious and recovered are uncertain due to the different degrees in susceptibility, infectivity and recovery among the individuals of the population. The differences can arise, when the population groups under the consideration having distinct habits, customs and different age groups have different degrees of resistance, etc. More realistic models are needed which consider these different degrees of susceptibility infectivity and recovery of the individuals. In this paper, a Susceptible, Infected and Recovered (SIR) More >

  • Open Access

    ARTICLE

    Multi-Stage Intelligent Smart Lockdown using SIR Model to Control COVID 19

    Abdul Ghaffar1, Saad Alanazi2, Madallah Alruwaili2, Mian Usman Sattar3, Waqas Ali4, Memoona Humayun2, Shahan Yamin Siddiqui5,6, Fahad Ahmad7, Muhammad Adnan Khan8,*

    Intelligent Automation & Soft Computing, Vol.28, No.2, pp. 429-445, 2021, DOI:10.32604/iasc.2021.014685

    Abstract Corona Virus (COVID-19) is a contagious disease. Unless an effective vaccine is available, various techniques such as lockdown, social distancing, or business Standard operating procedures (SOPs) must be implemented. Lockdown is an effective technique for controlling the spread of the virus, but it severely affects the economy of developing countries. No single technique for controlling a pandemic situation has ever returned a promising result; therefore, using a combination of techniques would be best for controlling COVID-19. The South asian association of regional corporation (SAARC), region contains populous and developing countries that have a unique social-cultural… More >

  • Open Access

    ARTICLE

    Prediction of COVID-19 Pandemic Spread in Kingdom of Saudi Arabia

    Abdulaziz Attaallah1, Sabita Khatri2, Mohd Nadeem2, Syed Anas Ansar2, Abhishek Kumar Pandey2, Alka Agrawal2,*

    Computer Systems Science and Engineering, Vol.37, No.3, pp. 313-329, 2021, DOI:10.32604/csse.2021.014933

    Abstract A significant increase in the number of coronavirus cases can easily be noticed in most of the countries around the world. Inspite of the consistent preventive initiatives being taken to contain the spread of this virus, the unabated increase in the cases is both alarming and intriguing. The role of mathematical models in predicting and estimating the spread of the virus, and identifying various preventive factors dependencies has been found important and effective in most of the previous pandemics like Severe Acute Respiratory Syndrome (SARS) 2003. In this research work, authors have proposed the Susceptible-Infectected-Removed… More >

  • Open Access

    ARTICLE

    Data Driven Modelling of Coronavirus Spread in Spain

    G. N. Baltas1, *, F. A. Prieto1, M. Frantzi2, C. R. Garcia-Alonso1, P. Rodriguez1, 3

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1343-1357, 2020, DOI:10.32604/cmc.2020.011243

    Abstract During the late months of last year, a novel coronavirus was detected in Hubei, China. The virus, since then, has spread all across the globe forcing Word Health Organization (WHO) to declare COVID-19 outbreak a pandemic. In Spain, the virus started infecting the country slowly until rapid growth of infected people occurred in Madrid, Barcelona and other major cities. The government in an attempt to stop the rapssid spread of the virus and ensure that health system will not reach its capacity, implement strict measures by putting the entire country in quarantine. The duration of… More >

  • Open Access

    ARTICLE

    Reduced Differential Transform Method for Solving Nonlinear Biomathematics Models

    K. A. Gepreel1,2, A. M. S. Mahdy1,2,*, M. S. Mohamed1,3, A. Al-Amiri4

    CMC-Computers, Materials & Continua, Vol.61, No.3, pp. 979-994, 2019, DOI:10.32604/cmc.2019.07701

    Abstract In this paper, we study the approximate solutions for some of nonlinear Biomathematics models via the e-epidemic SI1I2R model characterizing the spread of viruses in a computer network and SIR childhood disease model. The reduced differential transforms method (RDTM) is one of the interesting methods for finding the approximate solutions for nonlinear problems. We apply the RDTM to discuss the analytic approximate solutions to the SI1I2R model for the spread of virus HCV-subtype and SIR childhood disease model. We discuss the numerical results at some special values of parameters in the approximate solutions. We use More >

Displaying 1-10 on page 1 of 8. Per Page