Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Modeling and Simulation of Epidemics Using q-Diffusion-Based SEIR Framework with Stochastic Perturbations

    Amani Baazeem1, Muhammad Shoaib Arif2,*, Yasir Nawaz3, Kamaleldin Abodayeh2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3463-3489, 2025, DOI:10.32604/cmes.2025.066299 - 30 June 2025

    Abstract The numerical approximation of stochastic partial differential equations (SPDEs), particularly those including q-diffusion, poses considerable challenges due to the requirements for high-order precision, stability amongst random perturbations, and processing efficiency. Because of their simplicity, conventional numerical techniques like the Euler-Maruyama method are frequently employed to solve stochastic differential equations; nonetheless, they may have low-order accuracy and lower stability in stiff or high-resolution situations. This study proposes a novel computational scheme for solving SPDEs arising from a stochastic SEIR model with q-diffusion and a general incidence rate function. A proposed computational scheme can be used to… More >

  • Open Access

    ARTICLE

    SEIR Mathematical Model for Influenza-Corona Co-Infection with Treatment and Hospitalization Compartments and Optimal Control Strategies

    Muhammad Imran1,*, Brett McKinney1, Azhar Iqbal Kashif Butt2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1899-1931, 2025, DOI:10.32604/cmes.2024.059552 - 27 January 2025

    Abstract The co-infection of corona and influenza viruses has emerged as a significant threat to global public health due to their shared modes of transmission and overlapping clinical symptoms. This article presents a novel mathematical model that addresses the dynamics of this co-infection by extending the SEIR (Susceptible-Exposed-Infectious-Recovered) framework to incorporate treatment and hospitalization compartments. The population is divided into eight compartments, with infectious individuals further categorized into influenza infectious, corona infectious, and co-infection cases. The proposed mathematical model is constrained to adhere to fundamental epidemiological properties, such as non-negativity and boundedness within a feasible region.… More >

  • Open Access

    ARTICLE

    A Nonstandard Computational Investigation of SEIR Model with Fuzzy Transmission, Recovery and Death Rates

    Ahmed H. Msmali1, Fazal Dayan2,*, Muhammad Rafiq3, Nauman Ahmed4, Abdullah Ali H. Ahmadini1, Hassan A. Hamali5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2251-2269, 2023, DOI:10.32604/cmc.2023.040266 - 29 November 2023

    Abstract In this article, a Susceptible-Exposed-Infectious-Recovered (SEIR) epidemic model is considered. The equilibrium analysis and reproduction number are studied. The conventional models have made assumptions of homogeneity in disease transmission that contradict the actual reality. However, it is crucial to consider the heterogeneity of the transmission rate when modeling disease dynamics. Describing the heterogeneity of disease transmission mathematically can be achieved by incorporating fuzzy theory. A numerical scheme nonstandard, finite difference (NSFD) approach is developed for the studied model and the results of numerical simulations are presented. Simulations of the constructed scheme are presented. The positivity,… More >

  • Open Access

    ARTICLE

    Numerical Computation of SEIR Model for the Zika Virus Spreading

    Suthep Suantai1,2, Zulqurnain Sabir3,4, Muhammad Asif Zahoor Raja5, Watcharaporn Cholamjiak6,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2155-2170, 2023, DOI:10.32604/cmc.2023.034699 - 06 February 2023

    Abstract The purpose of this study is to present the numerical performances and interpretations of the SEIR nonlinear system based on the Zika virus spreading by using the stochastic neural networks based intelligent computing solver. The epidemic form of the nonlinear system represents the four dynamics of the patients, susceptible patients S(y), exposed patients hospitalized in hospital E(y), infected patients I(y), and recovered patients R(y), i.e., SEIR model. The computing numerical outcomes and performances of the system are examined by using the artificial neural networks (ANNs) and the scaled conjugate gradient (SCG) for the training of the networks, More >

  • Open Access

    ARTICLE

    Using Susceptible-Exposed-Infectious-Recovered Model to Forecast Coronavirus Outbreak

    Debabrata Dansana1, Raghvendra Kumar1, Arupa Parida1, Rohit Sharma2, Janmejoy Das Adhikari1, Hiep Van Le3,*, Binh Thai Pham4, Krishna Kant Singh5, Biswajeet Pradhan6,7,8,9

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1595-1612, 2021, DOI:10.32604/cmc.2021.012646 - 05 February 2021

    Abstract The Coronavirus disease 2019 (COVID-19) outbreak was first discovered in Wuhan, China, and it has since spread to more than 200 countries. The World Health Organization proclaimed COVID-19 a public health emergency of international concern on January 30, 2020. Normally, a quickly spreading infection that could jeopardize the well-being of countless individuals requires prompt action to forestall the malady in a timely manner. COVID-19 is a major threat worldwide due to its ability to rapidly spread. No vaccines are yet available for COVID-19. The objective of this paper is to examine the worldwide COVID-19 pandemic,… More >

Displaying 1-10 on page 1 of 5. Per Page