Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (293)
  • Open Access

    PROCEEDINGS

    Bubble Dynamics Within a Droplet: A New Mechanism for Mixing in Binary Immiscible Fluid Systems

    Zhesheng Zhao1, Shuai Li1, Rui Han2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012080

    Abstract This study investigates the interactions between droplets and bubbles within water-in-oil (O/W) and oil-in-water (W/O) systems, a fundamental problem of bubble dynamics in binary immiscible fluid systems. Considering the density ratio between the two fluids and the bubble-to-droplet size ratio, we have refined the classical spherical bubble pulsation equation, Rayleigh collapse time, and the natural frequency. In our experimental study, we found that the Rayleigh-Taylor (RT) instability hardly develops on the surface of the droplet when the densities of the two liquids are comparable. This phenomenon is explained using the classic theory of spherical RT More >

  • Open Access

    ARTICLE

    A Bibliometric Analysis of Positive Mental Health Research and Development in the Social Science Citation Index

    Petrayuna Dian Omega1, Joniarto Parung1,*, Listyo Yuwanto1, Yuh-Shan Ho2,*

    International Journal of Mental Health Promotion, Vol.26, No.10, pp. 817-836, 2024, DOI:10.32604/ijmhp.2024.056501 - 31 October 2024

    Abstract Background: This study aimed to conduct a bibliometric analysis of positive mental health, focusing on citation performance, article title, abstract, author keywords, Keyword Plus, and their development trends. The novelty of this study is a pioneer within the field of positive mental health. Therefore, it delivered new ideas for researchers and practitioners who had concerns about positive mental health in terms of trends research which covered recommended articles and the research focus in recent years. Methods: The data were retrieved on 30 April 2024 from the Social Sciences Citation Index (SSCI) of Clarivate Analytics’ Web of… More >

  • Open Access

    ABSTRACT

    Abstracts from the XL Annual Scientific Meeting of Tucuman Biology Association

    BIOCELL, Vol.48, Suppl.4, pp. 1-34, 2024

    Abstract This article has no abstract. More >

  • Open Access

    PROCEEDINGS

    A Few Key Scientific Advances of MGE

    Xiaodong Xiang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012861

    Abstract Material genes could be understood as the relationship between composition (element, valence state, function group, etc.), structure (lattice, molecular weight, defect, etc.), thermodynamic parameters (temperature, time, pressure, etc.) and physical properties, represented as materials phase diagrams [1-3]. I will discuss 1) a recently developed an optical plasma resonance spectrum method to characterize the electrical transport properties; 2)the progress in studying dynamic phase diagrams;3)the progress using advanced neural network algorisms to predict materials key properties. More >

  • Open Access

    PROCEEDINGS

    iHUMAN: Syngeneic, Vascularised, Innervated, Standard Live Human Platform for Science and Industry

    Tong Cao1,2,3,*, Xiangyu Hu1,3, Yusu Zhang1,2, Lihong Wang1,2, Dandan Lu1,3, Jinhua Wu1,2, Chenyu Qiu1,2, Siyun Lei1,2, Qian Luo1,2, Jie Wang1,2, Jing Zhou1,3, Yang Cheng1,2, Jinpeng Xie1,2, Ting Kou1,2, Jue Wang1,3, Lei Xu1,2, Xinlei Wei1, Gu Cheng1,3, Xin Fu1, Shukuan Ling1, Yihuai Pan3, Wujun Geng1,4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.012775

    Abstract Government authorities, academies, research institutes and industries are presently hindered by a lack of functional, healthy and standardized human platforms of cells, tissues, and organs, predominantly using costly live animal models and cells of low human relevance. Existing models of live animals or immortalized cell lines of either animal or human origin, often poorly reflect human physiology. Primary human cell cultures are difficult to procure in sufficient quantity and can be prone to much inter-batch variability, depending on the cell source. By contrast, self-renewable, genetically healthy and single-sourced human pluripotent stem cells (PSCs) exhibit enhanced… More >

  • Open Access

    ARTICLE

    High-Order DG Schemes with Subcell Limiting Strategies for Simulations of Shocks, Vortices and Sound Waves in Materials Science Problems

    Zhenhua Jiang1,*, Xi Deng2,3, Xin Zhang1, Chao Yan1, Feng Xiao4, Jian Yu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2183-2204, 2024, DOI:10.32604/fdmp.2024.053231 - 23 September 2024

    Abstract Shock waves, characterized by abrupt changes in pressure, temperature, and density, play a significant role in various materials science processes involving fluids. These high-energy phenomena are utilized across multiple fields and applications to achieve unique material properties and facilitate advanced manufacturing techniques. Accurate simulations of these phenomena require numerical schemes that can represent shock waves without spurious oscillations and simultaneously capture acoustic waves for a wide range of wavelength scales. This work suggests a high-order discontinuous Galerkin (DG) method with a finite volume (FV) subcell limiting strategies to achieve better subcell resolution and lower numerical More >

  • Open Access

    ARTICLE

    Libration-Generated Average Convection in a Rotating Flat Layer with Horizontal Axis

    Kirill Rysin*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2235-2249, 2024, DOI:10.32604/fdmp.2024.052324 - 23 September 2024

    Abstract The study of average convection in a rotating cavity subjected to modulated rotation is an interesting area for the development of both fundamental and applied science. This phenomenon finds application in the field of mass transfer and fluid flow control, relevant examples being crystal growth under reduced gravity and fluid mixing in microfluidic devices for cell cultures. In this study, the averaged flow generated by the oscillating motion of a fluid in a planar layer rotating about a horizontal axis is experimentally investigated. The boundaries of the layer are maintained at constant temperatures, while the… More >

  • Open Access

    ARTICLE

    Vibrational Suspension of Two Cylinders in a Rotating Liquid-Filled Cavity with a Time-Varying Rotation Rate

    Olga Vlasova*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2127-2137, 2024, DOI:10.32604/fdmp.2024.051202 - 23 August 2024

    Abstract The dynamics of rotating hydrodynamic systems containing phase inclusions are interesting due to the related widespread occurrence in nature and technology. The influence of external force fields on rotating systems can be used to control the dynamics of inclusions of various types. Controlling inclusions is of current interest for space technologies. In low gravity, even a slight vibration effect can lead to the appearance of a force acting on phase inclusions near a solid boundary. When vibrations are applied to multiphase hydrodynamic systems, the oscillating body intensively interacts with the fluid and introduces changes in… More >

  • Open Access

    ARTICLE

    Incorporating Lasso Regression to Physics-Informed Neural Network for Inverse PDE Problem

    Meng Ma1,2,*, Liu Fu1,2, Xu Guo3, Zhi Zhai1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 385-399, 2024, DOI:10.32604/cmes.2024.052585 - 20 August 2024

    Abstract Partial Differential Equation (PDE) is among the most fundamental tools employed to model dynamic systems. Existing PDE modeling methods are typically derived from established knowledge and known phenomena, which are time-consuming and labor-intensive. Recently, discovering governing PDEs from collected actual data via Physics Informed Neural Networks (PINNs) provides a more efficient way to analyze fresh dynamic systems and establish PED models. This study proposes Sequentially Threshold Least Squares-Lasso (STLasso), a module constructed by incorporating Lasso regression into the Sequentially Threshold Least Squares (STLS) algorithm, which can complete sparse regression of PDE coefficients with the constraints More >

  • Open Access

    ARTICLE

    Experimental and Numerical Evaluation of the Cavitation Performances of Self-Excited Oscillating Jets

    Yuanyuan Zhao1, Fujian Zhao2, Guohui Li3, Wei Xu4,*, Xiuli Wang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1883-1901, 2024, DOI:10.32604/fdmp.2024.047298 - 06 August 2024

    Abstract Self-excited oscillating jets (SOJ) are used in several practical applications. Their performances are significantly affected by structural parameters and the target distance. In this study, a geometric model of the SOJ nozzle accounting for multiple structural parameters is introduced, then the related cavitation performances and the optimal target distance are investigated using a Large-Eddy Simulation (LES) approach. Results are also provided about an experiment, which was conducted to validate the simulation results. By analyzing the evolution of the vapor volume fraction at the nozzle outlet, a discussion is presented about the effect of the aforementioned… More >

Displaying 1-10 on page 1 of 293. Per Page