Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    SCADA Data-Based Support Vector Machine for False Alarm Identification for Wind Turbine Management

    Ana María Peco Chacón, Isaac Segovia Ramírez, Fausto Pedro García Márquez*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2595-2608, 2023, DOI:10.32604/iasc.2023.037277 - 11 September 2023

    Abstract Maintenance operations have a critical influence on power generation by wind turbines (WT). Advanced algorithms must analyze large volume of data from condition monitoring systems (CMS) to determine the actual working conditions and avoid false alarms. This paper proposes different support vector machine (SVM) algorithms for the prediction and detection of false alarms. K-Fold cross-validation (CV) is applied to evaluate the classification reliability of these algorithms. Supervisory Control and Data Acquisition (SCADA) data from an operating WT are applied to test the proposed approach. The results from the quadratic SVM showed an accuracy rate of More >

  • Open Access

    ARTICLE

    Wind Turbine Spindle Operating State Recognition and Early Warning Driven by SCADA Data

    Yuhan Liu, Yuqiao Zheng*, Zhuang Ma, Cang Wu

    Energy Engineering, Vol.120, No.5, pp. 1223-1237, 2023, DOI:10.32604/ee.2023.026329 - 20 February 2023

    Abstract An operating condition recognition approach of wind turbine spindle is proposed based on supervisory control and data acquisition (SCADA) normal data drive. Firstly, the SCADA raw data of wind turbine under full working conditions are cleaned and feature extracted. Then the spindle speed is employed as the output parameter, and the single and combined normal behavior model of the wind turbine spindle is constructed sequentially with the pre-processed data, with the evaluation indexes selected as the optimal model. Finally, calculating the spindle operation status index according to the sliding window principle, ascertaining the threshold value More >

  • Open Access

    ARTICLE

    Detecting Icing on the Blades of a Wind Turbine Using a Deep Neural Network

    Tingshun Li1, Jiaohui Xu1,*, Zesan Liu2, Dadi Wang2, Wen Tan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 767-782, 2023, DOI:10.32604/cmes.2022.020702 - 31 August 2022

    Abstract The blades of wind turbines located at high latitudes are often covered with ice in late autumn and winter, where this affects their capacity for power generation as well as their safety. Accurately identifying the icing of the blades of wind turbines in remote areas is thus important, and a general model is needed to this end. This paper proposes a universal model based on a Deep Neural Network (DNN) that uses data from the Supervisory Control and Data Acquisition (SCADA) system. Two datasets from SCADA are first preprocessed through undersampling, that is, they are… More >

  • Open Access

    ARTICLE

    Investigation of Inverter Temperature Prediction Model in Wind Farm Based on SCADA Data

    Qihui Ling1,2,*, Wei Zhang2, Qiancheng Zhao1,2, Juchuan Dai1,2

    Energy Engineering, Vol.119, No.1, pp. 287-300, 2022, DOI:10.32604/EE.2022.014718 - 22 November 2021

    Abstract The inverter is one of the key components of wind turbine, and it is a complex circuit composed of a series of components such as a variety of electronic components and power devices. Therefore, it is difficult to accurately identify the operation states of inverter and some problems regarding its own circuit, especially in the early stages of failure. However, if the inverter temperature prediction model can be established, the early states can be identified through the judgment of the output temperature. Accordingly, considering whether the inverter heats up normally from the perspective of heat… More >

  • Open Access

    ARTICLE

    Power Data Preprocessing Method of Mountain Wind Farm Based on POT-DBSCAN

    Anfeng Zhu, Zhao Xiao, Qiancheng Zhao*

    Energy Engineering, Vol.118, No.3, pp. 549-563, 2021, DOI:10.32604/EE.2021.014177 - 22 March 2021

    Abstract Due to the frequent changes of wind speed and wind direction, the accuracy of wind turbine (WT) power prediction using traditional data preprocessing method is low. This paper proposes a data preprocessing method which combines POT with DBSCAN (POT-DBSCAN) to improve the prediction efficiency of wind power prediction model. Firstly, according to the data of WT in the normal operation condition, the power prediction model of WT is established based on the Particle Swarm Optimization (PSO) Arithmetic which is combined with the BP Neural Network (PSO-BP). Secondly, the wind-power data obtained from the supervisory control More >

Displaying 1-10 on page 1 of 5. Per Page