Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,221)
  • Open Access

    ARTICLE

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

    Xianke He1, Yuansheng Li1, Hengjie Liao1, Zhehao Jiang1, Meixue Shi1, Zhe Hu2,3, Yaowei Huang2,3, Keliu Wu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.074990 - 06 February 2026

    Abstract Weak water-drive offshore reservoirs with complex pore architecture and strong permeability heterogeneity present major challenges, including rapid depletion of formation energy, low waterflood efficiency, and significant lateral and vertical variability in crude oil properties, all of which contribute to limited recovery. To support more effective field development, alternative strategies and a deeper understanding of pore-scale flow behavior are urgently needed. In this work, CT imaging and digital image processing were used to construct a digital rock model representative of the target reservoir. A pore-scale flow model was then developed, and the Volume of Fluid (VOF)… More > Graphic Abstract

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

  • Open Access

    ARTICLE

    YOLO-SPDNet: Multi-Scale Sequence and Attention-Based Tomato Leaf Disease Detection Model

    Meng Wang1, Jinghan Cai1, Wenzheng Liu1, Xue Yang1, Jingjing Zhang1, Qiangmin Zhou1, Fanzhen Wang1, Hang Zhang1,*, Tonghai Liu2,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2025.075541 - 30 January 2026

    Abstract Tomato is a major economic crop worldwide, and diseases on tomato leaves can significantly reduce both yield and quality. Traditional manual inspection is inefficient and highly subjective, making it difficult to meet the requirements of early disease identification in complex natural environments. To address this issue, this study proposes an improved YOLO11-based model, YOLO-SPDNet (Scale Sequence Fusion, Position-Channel Attention, and Dual Enhancement Network). The model integrates the SEAM (Self-Ensembling Attention Mechanism) semantic enhancement module, the MLCA (Mixed Local Channel Attention) lightweight attention mechanism, and the SPA (Scale-Position-Detail Awareness) module composed of SSFF (Scale Sequence Feature… More >

  • Open Access

    ARTICLE

    Integrating Carbonation Durability and Cover Scaling into Low-Carbon Concrete Design: A New Framework for Sustainable Slag-Based Mixtures

    Kang-Jia Wang1, Hongzhi Zhang2, Runsheng Lin3,*, Jiabin Li4, Xiao-Yong Wang1,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074787 - 29 January 2026

    Abstract Conventional low-carbon concrete design approaches have often overlooked carbonation durability and the progressive loss of cover caused by surface scaling, both of which can increase the long-term risk of reinforcement corrosion. To address these limitations, this study proposes an improved design framework for low-carbon slag concrete that simultaneously incorporates carbonation durability and cover scaling effects into the mix proportioning process. Based on experimental data, a linear predictive model was developed to estimate the 28-day compressive strength of slag concrete, achieving a correlation coefficient of R = 0.87711 and a root mean square error (RMSE) of… More >

  • Open Access

    ARTICLE

    TransCarbonNet: Multi-Day Grid Carbon Intensity Forecasting Using Hybrid Self-Attention and Bi-LSTM Temporal Fusion for Sustainable Energy Management

    Amel Ksibi*, Hatoon Albadah, Ghadah Aldehim, Manel Ayadi

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073533 - 29 January 2026

    Abstract Sustainable energy systems will entail a change in the carbon intensity projections, which should be carried out in a proper manner to facilitate the smooth running of the grid and reduce greenhouse emissions. The present article outlines the TransCarbonNet, a novel hybrid deep learning framework with self-attention characteristics added to the bidirectional Long Short-Term Memory (Bi-LSTM) network to forecast the carbon intensity of the grid several days. The proposed temporal fusion model not only learns the local temporal interactions but also the long-term patterns of the carbon emission data; hence, it is able to give… More >

  • Open Access

    ARTICLE

    Development of AI-Based Monitoring System for Stratified Quality Assessment of 3D Printed Parts

    Yewon Choi1,2, Song Hyeon Ju2, Jungsoo Nam2,*, Min Ku Kim1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.071817 - 29 January 2026

    Abstract The composite material layering process has attracted considerable attention due to its production advantages, including high scalability and compatibility with a wide range of raw materials. However, changes in process conditions can lead to degradation in layer quality and non-uniformity, highlighting the need for real-time monitoring to improve overall quality and efficiency. In this study, an AI-based monitoring system was developed to evaluate layer width and assess quality in real time. Three deep learning models Faster Region-based Convolutional Neural Network (R-CNN), You Only Look Once version 8 (YOLOv8), and Single Shot MultiBox Detector (SSD) were… More >

  • Open Access

    REVIEW

    Learning from Scarcity: A Review of Deep Learning Strategies for Cold-Start Energy Time-Series Forecasting

    Jihoon Moon*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.071052 - 29 January 2026

    Abstract Predicting the behavior of renewable energy systems requires models capable of generating accurate forecasts from limited historical data, a challenge that becomes especially pronounced when commissioning new facilities where operational records are scarce. This review aims to synthesize recent progress in data-efficient deep learning approaches for addressing such “cold-start” forecasting problems. It primarily covers three interrelated domains—solar photovoltaic (PV), wind power, and electrical load forecasting—where data scarcity and operational variability are most critical, while also including representative studies on hydropower and carbon emission prediction to provide a broader systems perspective. To this end, we examined… More >

  • Open Access

    ARTICLE

    Multi-Time Scale Optimization Scheduling of Data Center Considering Workload Shift and Refrigeration Regulation

    Luyao Liu*, Xiao Liao, Yiqian Li, Shaofeng Zhang

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.072631 - 27 January 2026

    Abstract Data center industries have been facing huge energy challenges due to escalating power consumption and associated carbon emissions. In the context of carbon neutrality, the integration of data centers with renewable energy has become a prevailing trend. To advance the renewable energy integration in data centers, it is imperative to thoroughly explore the data centers’ operational flexibility. Computing workloads and refrigeration systems are recognized as two promising flexible resources for power regulation within data center micro-grids. This paper identifies and categorizes delay-tolerant computing workloads into three types (long-running non-interruptible, long-running interruptible, and short-running) and develops… More >

  • Open Access

    ARTICLE

    Engineering and Tuning of Absorber Layer Properties for High-Efficiency SnS-Based Solar Cells: A SCAPS-1D Simulation Study

    Abla Guechi1, Djohra Dekhil2, Abdelhak Nouri2,*

    Chalcogenide Letters, Vol.23, No.1, 2026, DOI:10.32604/cl.2026.076586 - 26 January 2026

    Abstract This work uses numerical modeling in SCAPS-1D to examine the efficiency analysis of a solar cell based on SnS. The power conversion efficiency (PCE) is limited to 24.5% because of incomplete photon absorption in the absorber layer (SnS) and carrier recombination. To increase the absorption window, facilitate charge mobility, and suppress bulk recombination at the rear contact, the absorbent film was divided up into three sublayers with graded band gaps of 1.1 eV, 1.2 eV, and 1.3 eV. Furthermore, the sublayers’ linear gradient doping improved charge collection while simultaneously lowering recombination at the interface. A… More >

  • Open Access

    ARTICLE

    Development and Assessment of a Novel Palmitoylation-Related lncRNA Signature for Prognosis and Immune Landscape in Hepatocellular Carcinoma

    Zhilong He1,#, Jing Qin1,#, Sixuan Wu2,#, Xian Liang1, Yu Liu1, Jinfeng Qiu1, Zhimin Li2,*, Kai Hu1,*

    Oncology Research, Vol.34, No.2, 2026, DOI:10.32604/or.2025.070567 - 19 January 2026

    Abstract Objective: The contribution of long non-coding RNAs (lncRNAs) associated with protein palmitoylation to the progression of hepatocellular carcinoma (HCC) remains largely unclear. This study sought to establish a prognostic signature based on palmitoylation-related lncRNAs and explore their functional implications in HCC. Methods: RNA sequencing and clinical data for HCC and normal tissues were sourced from the Cancer Genome Atlas (TCGA). Pearson correlation analysis was used to identify lncRNAs that were co-expressed with palmitoylation-related genes. Univariate Cox regression was applied to select lncRNAs with prognostic value, followed by the construction of a predictive model using the… More >

  • Open Access

    ARTICLE

    Enhanced Multi-Scale Feature Extraction Lightweight Network for Remote Sensing Object Detection

    Xiang Luo1, Yuxuan Peng2, Renghong Xie1, Peng Li3, Yuwen Qian3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073700 - 12 January 2026

    Abstract Deep learning has made significant progress in the field of oriented object detection for remote sensing images. However, existing methods still face challenges when dealing with difficult tasks such as multi-scale targets, complex backgrounds, and small objects in remote sensing. Maintaining model lightweight to address resource constraints in remote sensing scenarios while improving task completion for remote sensing tasks remains a research hotspot. Therefore, we propose an enhanced multi-scale feature extraction lightweight network EM-YOLO based on the YOLOv8s architecture, specifically optimized for the characteristics of large target scale variations, diverse orientations, and numerous small objects… More >

Displaying 1-10 on page 1 of 1221. Per Page