Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (988)
  • Open Access

    ARTICLE

    Ubiquitin-specific protease 1 facilitates tumor immune escape from natural killer cells and predicts the prognosis in small cell lung cancer

    SHIQIN JIANG1,#, YICHUN TANG2,#, FENG MA3, YUCHUN NIU4,*, LEI SUN5,*

    Oncology Research, Vol.33, No.1, pp. 213-224, 2025, DOI:10.32604/or.2024.046895 - 20 December 2024

    Abstract Objective: Small cell lung cancer (SCLC) is commonly recognized as the most fatal lung cancer type. Despite substantial advances in immune checkpoint blockade therapies for treating solid cancers, their benefits are limited to a minority of patients with SCLC. In the present study, novel indicators for predicting the outcomes and molecular targets for SCLC treatment were elucidated. Methods: We conducted bioinformatics analysis to identify the key genes associated with tumor-infiltrating lymphocytes in SCLC. The functional role of the key gene identified in SCLC was determined both in vitro and in vivo. Results: A significant correlation was observed between… More >

  • Open Access

    ARTICLE

    Multi-Scale Dilated Convolution Network for SPECT-MPI Cardiovascular Disease Classification with Adaptive Denoising and Attenuation Correction

    A. Robert Singh1, Suganya Athisayamani2, Gyanendra Prasad Joshi3, Bhanu Shrestha4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 299-327, 2025, DOI:10.32604/cmes.2024.055599 - 17 December 2024

    Abstract Myocardial perfusion imaging (MPI), which uses single-photon emission computed tomography (SPECT), is a well-known estimating tool for medical diagnosis, employing the classification of images to show situations in coronary artery disease (CAD). The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks (CNNs). This paper uses a SPECT classification framework with three steps: 1) Image denoising, 2) Attenuation correction, and 3) Image classification. Image denoising is done by a U-Net architecture that ensures effective image denoising. Attenuation correction is implemented by a convolution neural network model that… More >

  • Open Access

    ARTICLE

    Life-Cycle Bearing Capacity for Pre-Stressed T-beams Based on Full-Scale Destructive Test

    Yushan Ye1, Tao Gao1, Liankun Wang2, Junjie Ma2, Yingchun Cai2, Heng Liu2,*, Xiaoge Liu2

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 145-166, 2025, DOI:10.32604/sdhm.2024.053756 - 15 November 2024

    Abstract To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams, destructive tests were conducted on full-scale pre-stressed concrete beams. Based on the measurement and analysis of beam deflection, strain, and crack development under various loading levels during the research tests, combined with the verification coefficient indicators specified in the codes, the verification coefficients of bridges at different stages of damage can be examined. The results indicate that the T-beams experience complete, incomplete linear, and… More >

  • Open Access

    ARTICLE

    A Scalable and Generalized Deep Ensemble Model for Road Anomaly Detection in Surveillance Videos

    Sarfaraz Natha1,2,*, Fareed A. Jokhio1, Mehwish Laghari1, Mohammad Siraj3,*, Saif A. Alsaif3, Usman Ashraf4, Asghar Ali5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3707-3729, 2024, DOI:10.32604/cmc.2024.057684 - 19 December 2024

    Abstract Surveillance cameras have been widely used for monitoring in both private and public sectors as a security measure. Close Circuits Television (CCTV) Cameras are used to surveillance and monitor the normal and anomalous incidents. Real-world anomaly detection is a significant challenge due to its complex and diverse nature. It is difficult to manually analyze because vast amounts of video data have been generated through surveillance systems, and the need for automated techniques has been raised to enhance detection accuracy. This paper proposes a novel deep-stacked ensemble model integrated with a data augmentation approach called Stack… More >

  • Open Access

    PROCEEDINGS

    Deep-Potential Enabled Multiscale Simulation of Interfacial Thermal Transport in Boron Arsenide Heterostructures

    Jing Wu1, E Zhou1, An Huang1, Hongbin Zhang2, Ming Hu3, Guangzhao Qin1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012552

    Abstract High thermal conductivity substrate plays a significant role for efficient heat dissipation of electronic devices, and it is urgent to optimize the interfacial thermal resistance. As a novel material with ultra-high thermal conductivity second only to diamond, boron arsenide (BAs) shows promising applications in electronics cooling [1,2]. By adopting multi-scale simulation method driven by machine learning potential, we systematically study the thermal transport properties of boron arsenide, and further investigate the interfacial thermal transport in the GaN-BAs heterostructures. Ultrahigh interfacial thermal conductance of 260 MW m-2K-1 is achieved, which agrees well with experimental measurements, and the More >

  • Open Access

    PROCEEDINGS

    Inductive and Deductive Scale-Bridging In Hierarchical Multiscale Models for Dislocation Pattern Formation in Metal Fatigue

    Yoshitaka Umeno1,*, Atsushi Kubo2, Emi Kawai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.012708

    Abstract Fatigue fracture accounts for a substantial fraction of failure cases in industrial products, especially in metal materials. While the mechanism of fatigue crack propagation can be understood in the mechanical point of view considering the effect of microstructures and crystal orientations on crack growth, there is still much room for investigations of the mechanism of fatigue crack formation under cyclic loading. It is widely understood that the fatigue crack formation in macroscopic metal materials originates in the persistent slip band (PSB) formed as a result of self-organization of dislocation structures [1]. Nevertheless, the PSB formation… More >

  • Open Access

    PROCEEDINGS

    Multiscale Optimization of Non-Linear Structures

    Ryan Murphy1,*, Dilaksan Thillaithevan1, Matthew Santer1, Rob Hewson1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011402

    Abstract In this work we describe the multiscale optimization of non-linear structures. This work moves beyond classical multiscale optimization for linear problems to account for large deformations occurring across the scales of the problem. A multiscale approach is adopted based on the homogenization theory which is used to characterize a parameterized representative volume element (RVE). This RVE characterization is undertaken for both changes in the geometry and the strain applied to the RVE. This latter is a key difference between multiscale approaches for non-linear problems and those for linear problems. This is because the characteristics of… More >

  • Open Access

    PROCEEDINGS

    Implicit Surfaces Generated from Field Values Directly-Obtained from Scattered Points

    Taku Itoh1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012260

    Abstract In meshless methods, although elements constructing an analysis domain are not required, the domain should be represented in some way, instead. A scalar field g(x), that contains the analysis domain, is sometimes employed, and the boundary of analysis domain is represented as an implicit surface, g(x) = 0. In this study, we consider generating an implicit surface from scattered points on the surface of an object. The scattered points are obtained by a three-dimensional scanning device. To generate g(x), field values fijk on N3 uniform grid points xijk are required. Although the field values fijk have been… More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Microstructure Manipulation of an Additively Manufactured CoCrNi Medium Entropy Alloy for Superior Mechanical Properties and Tunable Mechanical Anisotropy

    Chenze Li1, Manish Jain1,2, Qian Liu1, Zhuohan Cao1, Michael Ferry3, Jamie J. Kruzic1, Bernd Gludovatz1, Xiaopeng Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011290

    Abstract Laser powder bed fusion (LPBF) additive manufacturing (AM) technology has become a versatile tool for producing new microstructures in metal components, offering novel mechanical properties for different applications. In this work, enhanced ductility (~55% elongation) and tunable mechanical anisotropy (ratio of ductility along vertical to horizontal orientation from ~0.2 to ~1) were achieved for a CoCrNi medium entropy alloy (MEA) by multi-scale synergistic microstructure manipulation (i.e., melt pool boundary, grain morphology and crystallographic texture) through adjusting key LPBF processing parameters (e.g., laser power and scan speed). By increasing the volumetric energy density (VED) from 68.3… More >

  • Open Access

    PROCEEDINGS

    Scale-Inspired Programmable Robotic Structures with Concurrent Shape Morphing and Stiffness Variation

    Tianyu Chen1, Yifan Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011272

    Abstract Biological organisms often possess remarkable multifunctionality through intricate structures, such as the concurrent shape-morphing and stiffness-variation in octopus. Soft robots, which are inspired by natural creatures, usually require the integration of separate modules to achieve these various functions. As a result, the whole structure is cumbersome and the control system is complex, often involving multiple control loops to finish the required task. Here, inspired by the scaly creatures in nature such as pangolins and fish, we develop a robotic structure that can vary stiffness and change shape simultaneously in a highly-integrated compact body. The scale-inspired… More >

Displaying 1-10 on page 1 of 988. Per Page