Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (290)
  • Open Access

    ARTICLE

    Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites

    Chengkan Xu1,2,4, Xiaofei Wang3, Yixuan Li2, Guannan Wang2,*, He Zhang2,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 957-974, 2024, DOI:10.32604/cmes.2024.047327

    Abstract Structural damage in heterogeneous materials typically originates from microstructures where stress concentration occurs. Therefore, evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial. Repeating unit cells (RUCs) are commonly used to represent microstructural details and homogenize the effective response of composites. This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs. The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters, including volume fraction, fiber/matrix property ratio, fiber shapes, and loading direction. Subsequently, the conditional generative adversarial network… More > Graphic Abstract

    Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites

  • Open Access

    ARTICLE

    Boosting Adversarial Training with Learnable Distribution

    Kai Chen1,2, Jinwei Wang3, James Msughter Adeke1,2, Guangjie Liu1,2,*, Yuewei Dai1,4

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3247-3265, 2024, DOI:10.32604/cmc.2024.046082

    Abstract In recent years, various adversarial defense methods have been proposed to improve the robustness of deep neural networks. Adversarial training is one of the most potent methods to defend against adversarial attacks. However, the difference in the feature space between natural and adversarial examples hinders the accuracy and robustness of the model in adversarial training. This paper proposes a learnable distribution adversarial training method, aiming to construct the same distribution for training data utilizing the Gaussian mixture model. The distribution centroid is built to classify samples and constrain the distribution of the sample features. The natural and adversarial examples are… More >

  • Open Access

    ARTICLE

    Codelivery of anti-CD47 antibody and chlorin e6 using a dual pH-sensitive nanodrug for photodynamic immunotherapy of osteosarcoma

    JIJIE XIAO1, HONG XIAO2, YUJUN CAI3, JIANWEI LIAO1, JUE LIU1, LIN YAO1, SHAOLIN LI1,*

    Oncology Research, Vol.32, No.4, pp. 691-702, 2024, DOI:10.32604/or.2023.030767

    Abstract Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis. Immunotherapy has shown great potential in the treatment of osteosarcoma. However, the immunosuppressive microenvironment severely limits the efficacy of osteosarcoma treatment. The dual pH-sensitive nanocarrier has emerged as an effective antitumor drug delivery system that can selectively release drugs into the acidic tumor microenvironment. Here, we prepared a dual pH-sensitive nanocarrier, loaded with the photosensitizer Chlorin e6 (Ce6) and CD47 monoclonal antibodies (aCD47), to deliver synergistic photodynamic and immunotherapy of osteosarcoma. On laser irradiation, Ce6 can generate reactive oxygen species (ROS) to… More > Graphic Abstract

    Codelivery of anti-CD47 antibody and chlorin e6 using a dual pH-sensitive nanodrug for photodynamic immunotherapy of osteosarcoma

  • Open Access

    ARTICLE

    Generative Multi-Modal Mutual Enhancement Video Semantic Communications

    Yuanle Chen1, Haobo Wang1, Chunyu Liu1, Linyi Wang2, Jiaxin Liu1, Wei Wu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2985-3009, 2024, DOI:10.32604/cmes.2023.046837

    Abstract Recently, there have been significant advancements in the study of semantic communication in single-modal scenarios. However, the ability to process information in multi-modal environments remains limited. Inspired by the research and applications of natural language processing across different modalities, our goal is to accurately extract frame-level semantic information from videos and ultimately transmit high-quality videos. Specifically, we propose a deep learning-based Multi-Modal Mutual Enhancement Video Semantic Communication system, called M3E-VSC. Built upon a Vector Quantized Generative Adversarial Network (VQGAN), our system aims to leverage mutual enhancement among different modalities by using text as the main carrier of transmission. With it,… More >

  • Open Access

    ARTICLE

    An Empirical Study on the Effectiveness of Adversarial Examples in Malware Detection

    Younghoon Ban, Myeonghyun Kim, Haehyun Cho*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3535-3563, 2024, DOI:10.32604/cmes.2023.046658

    Abstract Antivirus vendors and the research community employ Machine Learning (ML) or Deep Learning (DL)-based static analysis techniques for efficient identification of new threats, given the continual emergence of novel malware variants. On the other hand, numerous researchers have reported that Adversarial Examples (AEs), generated by manipulating previously detected malware, can successfully evade ML/DL-based classifiers. Commercial antivirus systems, in particular, have been identified as vulnerable to such AEs. This paper firstly focuses on conducting black-box attacks to circumvent ML/DL-based malware classifiers. Our attack method utilizes seven different perturbations, including Overlay Append, Section Append, and Break Checksum, capitalizing on the ambiguities present… More >

  • Open Access

    ARTICLE

    MicroRNA-329-3p inhibits the Wnt/β-catenin pathway and proliferation of osteosarcoma cells by targeting transcription factor 7-like 1

    HUI SUN, MASANORI KAWANO*, TATSUYA IWASAKI, ICHIRO ITONAGA, YUTA KUBOTA, HIROSHI TSUMURA, KAZUHIRO TANAKA

    Oncology Research, Vol.32, No.3, pp. 463-476, 2024, DOI:10.32604/or.2023.044085

    Abstract An important factor in the emergence and progression of osteosarcoma (OS) is the dysregulated expression of microRNAs (miRNAs). Transcription factor 7-like 1 (TCF7L1), a member of the T cell factor/lymphoid enhancer factor (TCF/LEF) transcription factor family, interacts with the Wnt signaling pathway regulator β-catenin and acts as a DNA-specific binding protein. This study sought to elucidate the impact of the interaction between miR-329-3p and TCF7L1 on the growth and apoptosis of OS and analyze the regulatory expression relationship between miRNA and mRNA in osteosarcoma cells using a variety of approaches. MiR329-3p was significantly downregulated, while TCF7L1 was considerably up-regulated in… More > Graphic Abstract

    MicroRNA-329-3p inhibits the Wnt/β-catenin pathway and proliferation of osteosarcoma cells by targeting transcription factor 7-like 1

  • Open Access

    ARTICLE

    Local Adaptive Gradient Variance Attack for Deep Fake Fingerprint Detection

    Chengsheng Yuan1,2, Baojie Cui1,2, Zhili Zhou3, Xinting Li4,*, Qingming Jonathan Wu5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 899-914, 2024, DOI:10.32604/cmc.2023.045854

    Abstract In recent years, deep learning has been the mainstream technology for fingerprint liveness detection (FLD) tasks because of its remarkable performance. However, recent studies have shown that these deep fake fingerprint detection (DFFD) models are not resistant to attacks by adversarial examples, which are generated by the introduction of subtle perturbations in the fingerprint image, allowing the model to make fake judgments. Most of the existing adversarial example generation methods are based on gradient optimization, which is easy to fall into local optimal, resulting in poor transferability of adversarial attacks. In addition, the perturbation added to the blank area of… More >

  • Open Access

    ARTICLE

    A Novel Fall Detection Framework Using Skip-DSCGAN Based on Inertial Sensor Data

    Kun Fang, Julong Pan*, Lingyi Li, Ruihan Xiang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 493-514, 2024, DOI:10.32604/cmc.2023.045008

    Abstract With the widespread use of Internet of Things (IoT) technology in daily life and the considerable safety risks of falls for elderly individuals, research on IoT-based fall detection systems has gained much attention. This paper proposes an IoT-based spatiotemporal data processing framework based on a depthwise separable convolution generative adversarial network using skip-connection (Skip-DSCGAN) for fall detection. The method uses spatiotemporal data from accelerometers and gyroscopes in inertial sensors as input data. A semisupervised learning approach is adopted to train the model using only activities of daily living (ADL) data, which can avoid data imbalance problems. Furthermore, a quantile-based approach… More >

  • Open Access

    ARTICLE

    Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks: An Empirical Study

    Shahad Alzahrani1, Hatim Alsuwat2, Emad Alsuwat3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1635-1654, 2024, DOI:10.32604/cmes.2023.044718

    Abstract Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables. However, the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams. One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks, wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance. In this research paper, we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms. Our framework utilizes latent variables to quantify… More >

  • Open Access

    ARTICLE

    Sparse Adversarial Learning for FDIA Attack Sample Generation in Distributed Smart Grids

    Fengyong Li1,*, Weicheng Shen1, Zhongqin Bi1, Xiangjing Su2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2095-2115, 2024, DOI:10.32604/cmes.2023.044431

    Abstract False data injection attack (FDIA) is an attack that affects the stability of grid cyber-physical system (GCPS) by evading the detecting mechanism of bad data. Existing FDIA detection methods usually employ complex neural network models to detect FDIA attacks. However, they overlook the fact that FDIA attack samples at public-private network edges are extremely sparse, making it difficult for neural network models to obtain sufficient samples to construct a robust detection model. To address this problem, this paper designs an efficient sample generative adversarial model of FDIA attack in public-private network edge, which can effectively bypass the detection model to… More >

Displaying 1-10 on page 1 of 290. Per Page