Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (198)
  • Open Access

    ARTICLE

    Probabilistic Calculation of Tidal Currents for Wind Powered Systems Using PSO Improved LHS

    Hongsheng Su, Shilin Song*, Xingsheng Wang

    Energy Engineering, Vol.121, No.11, pp. 3289-3303, 2024, DOI:10.32604/ee.2024.054643 - 21 October 2024

    Abstract This paper introduces the Particle Swarm Optimization (PSO) algorithm to enhance the Latin Hypercube Sampling (LHS) process. The key objective is to mitigate the issues of lengthy computation times and low computational accuracy typically encountered when applying Monte Carlo Simulation (MCS) to LHS for probabilistic trend calculations. The PSO method optimizes sample distribution, enhances global search capabilities, and significantly boosts computational efficiency. To validate its effectiveness, the proposed method was applied to IEEE34 and IEEE-118 node systems containing wind power. The performance was then compared with Latin Hypercubic Important Sampling (LHIS), which integrates significant sampling More >

  • Open Access

    ARTICLE

    Improving Generalization for Hyperspectral Image Classification: The Impact of Disjoint Sampling on Deep Models

    Muhammad Ahmad1,*, Manuel Mazzara2, Salvatore Distefano3, Adil Mehmood Khan4, Hamad Ahmed Altuwaijri5

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 503-532, 2024, DOI:10.32604/cmc.2024.056318 - 15 October 2024

    Abstract Disjoint sampling is critical for rigorous and unbiased evaluation of state-of-the-art (SOTA) models e.g., Attention Graph and Vision Transformer. When training, validation, and test sets overlap or share data, it introduces a bias that inflates performance metrics and prevents accurate assessment of a model’s true ability to generalize to new examples. This paper presents an innovative disjoint sampling approach for training SOTA models for the Hyperspectral Image Classification (HSIC). By separating training, validation, and test data without overlap, the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was… More >

  • Open Access

    ARTICLE

    Data-Driven Decision-Making for Bank Target Marketing Using Supervised Learning Classifiers on Imbalanced Big Data

    Fahim Nasir1, Abdulghani Ali Ahmed1,*, Mehmet Sabir Kiraz1, Iryna Yevseyeva1, Mubarak Saif2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1703-1728, 2024, DOI:10.32604/cmc.2024.055192 - 15 October 2024

    Abstract Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making. However, imbalanced target variables within big data present technical challenges that hinder the performance of supervised learning classifiers on key evaluation metrics, limiting their overall effectiveness. This study presents a comprehensive review of both common and recently developed Supervised Learning Classifiers (SLCs) and evaluates their performance in data-driven decision-making. The evaluation uses various metrics, with a particular focus on the Harmonic Mean Score (F-1 score) on an imbalanced real-world bank target marketing dataset. The findings indicate… More >

  • Open Access

    ARTICLE

    Fuzzy Machine Learning-Based Algorithms for Mapping Cumin and Fennel Spices Crop Fields Using Sentinel-2 Satellite Data

    Shilpa Suman1, Abhishek Rawat2,*, Anil Kumar3, S. K. Tiwari4

    Revue Internationale de Géomatique, Vol.33, pp. 363-381, 2024, DOI:10.32604/rig.2024.053981 - 18 September 2024

    Abstract In this study, the impact of the training sample selection method on the performance of fuzzy-based Possibilistic c-means (PCM) and Noise Clustering (NC) classifiers were examined and mapped the cumin and fennel rabi crop. Two training sample selection approaches that have been investigated in this study are “mean” and “individual sample as mean”. Both training sample techniques were applied to the PCM and NC classifiers to classify the two indices approach. Both approaches have been studied to decrease spectral information in temporal data processing. The Modified Soil Adjusted Vegetation Index 2 (MSAVI-2) and Class-Based Sensor… More >

  • Open Access

    ARTICLE

    A Path Planning Algorithm Based on Improved RRT Sampling Region

    Xiangkui Jiang*, Zihao Wang, Chao Dong

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4303-4323, 2024, DOI:10.32604/cmc.2024.054640 - 12 September 2024

    Abstract

    For the problem of slow search and tortuous paths in the Rapidly Exploring Random Tree (RRT) algorithm, a feedback-biased sampling RRT, called FS-RRT, is proposed based on RRT. Firstly, to improve the sampling efficiency of RRT to shorten the search time, the search area of the random tree is restricted to improve the sampling efficiency. Secondly, to obtain better information about obstacles to shorten the path length, a feedback-biased sampling strategy is used instead of the traditional random sampling, the collision of the expanding node with an obstacle generates feedback information so that the next

    More >

  • Open Access

    ARTICLE

    Importance-Weighted Transfer Learning for Fault Classification under Covariate Shift

    Yi Pan1, Lei Xie2,*, Hongye Su2

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 683-696, 2024, DOI:10.32604/iasc.2023.038543 - 06 September 2024

    Abstract In the process of fault detection and classification, the operation mode usually drifts over time, which brings great challenges to the algorithms. Because traditional machine learning based fault classification cannot dynamically update the trained model according to the probability distribution of the testing dataset, the accuracy of these traditional methods usually drops significantly in the case of covariate shift. In this paper, an importance-weighted transfer learning method is proposed for fault classification in the nonlinear multi-mode industrial process. It effectively alters the drift between the training and testing dataset. Firstly, the mutual information method is… More >

  • Open Access

    ARTICLE

    Variation in the Composition of the Essential Oil of Commercial Salvia officinalis L. Leaves Samples from Different Countries

    Ain Raal1,*, Anne Orav2, Tetiana Ilina3, Alla Kovalyova4, Taras Koliadzhyn3, Yuliia Avidzba5, Oleh Koshovyi1,4,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 2051-2062, 2024, DOI:10.32604/phyton.2024.052790 - 30 August 2024

    Abstract Salvia officinalis L. (Lamiaceae) leaves and its essential oil is used for mouth and throat disorders, skin disorders, minor wounds, and gastrointestinal disorders, and is widely used worldwide. The research aimed to conduct a comparative study of the composition of S. officinalis essential oils from commercial samples, and their main chemotypes. The volatile constituents from S. officinalis leaves were investigated using gas chromatography (GC). The commercial samples of sage leaves were obtained from retail pharmacies in nine mainly European countries. The yield of essential oil in S. officinalis commercial leaves was between 10.0 and 24.8 mL/kg. The principal components More > Graphic Abstract

    Variation in the Composition of the Essential Oil of Commercial <i>Salvia officinalis</i> L. Leaves Samples from Different Countries

  • Open Access

    ARTICLE

    A Fault Detection Method for Electric Vehicle Battery System Based on Bayesian Optimization SVDD Considering a Few Faulty Samples

    Miao Li, Fanyong Cheng*, Jiong Yang, Maxwell Mensah Duodu, Hao Tu

    Energy Engineering, Vol.121, No.9, pp. 2543-2568, 2024, DOI:10.32604/ee.2024.051231 - 19 August 2024

    Abstract Accurate and reliable fault detection is essential for the safe operation of electric vehicles. Support vector data description (SVDD) has been widely used in the field of fault detection. However, constructing the hypersphere boundary only describes the distribution of unlabeled samples, while the distribution of faulty samples cannot be effectively described and easily misses detecting faulty data due to the imbalance of sample distribution. Meanwhile, selecting parameters is critical to the detection performance, and empirical parameterization is generally time-consuming and laborious and may not result in finding the optimal parameters. Therefore, this paper proposes a… More >

  • Open Access

    ARTICLE

    Learning Vector Quantization-Based Fuzzy Rules Oversampling Method

    Jiqiang Chen, Ranran Han, Dongqing Zhang, Litao Ma*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5067-5082, 2024, DOI:10.32604/cmc.2024.051494 - 20 June 2024

    Abstract Imbalanced datasets are common in practical applications, and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes. However, the creation of fuzzy rules typically depends on expert knowledge, which may not fully leverage the label information in training data and may be subjective. To address this issue, a novel fuzzy rule oversampling approach is developed based on the learning vector quantization (LVQ) algorithm. In this method, the label information of the training data is utilized to determine the antecedent… More >

  • Open Access

    ARTICLE

    SGT-Net: A Transformer-Based Stratified Graph Convolutional Network for 3D Point Cloud Semantic Segmentation

    Suyi Liu1,*, Jianning Chi1, Chengdong Wu1, Fang Xu2,3,4, Xiaosheng Yu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4471-4489, 2024, DOI:10.32604/cmc.2024.049450 - 20 June 2024

    Abstract In recent years, semantic segmentation on 3D point cloud data has attracted much attention. Unlike 2D images where pixels distribute regularly in the image domain, 3D point clouds in non-Euclidean space are irregular and inherently sparse. Therefore, it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space. Most current methods either focus on local feature aggregation or long-range context dependency, but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks. In this paper, we propose a Transformer-based… More >

Displaying 1-10 on page 1 of 198. Per Page