Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Deep Learning-Based Approach for Road Surface Damage Detection

    Bakhytzhan Kulambayev1,*, Gulbakhram Beissenova2,3, Nazbek Katayev4, Bayan Abduraimova5, Lyazzat Zhaidakbayeva2, Alua Sarbassova6, Oxana Akhmetova7, Sapar Issayev4, Laura Suleimenova8, Syrym Kasenov6, Kunsulu Shadinova9, Abay Shyrakbaev10

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3403-3418, 2022, DOI:10.32604/cmc.2022.029544 - 16 June 2022

    Abstract Timely detection and elimination of damage in areas with excessive vehicle loading can reduce the risk of road accidents. Currently, various methods of photo and video surveillance are used to monitor the condition of the road surface. The manual approach to evaluation and analysis of the received data can take a protracted period of time. Thus, it is necessary to improve the procedures for inspection and assessment of the condition of control objects with the help of computer vision and deep learning techniques. In this paper, we propose a model based on Mask Region-based Convolutional… More >

  • Open Access

    ARTICLE

    Road Damage Detection and Classification Using Mask R-CNN with DenseNet Backbone

    Qiqiang Chen1, *, Xinxin Gan2, Wei Huang1, Jingjing Feng1, H. Shim3

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2201-2215, 2020, DOI:10.32604/cmc.2020.011191 - 16 September 2020

    Abstract Automatic road damage detection using image processing is an important aspect of road maintenance. It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images. In recent years, deep convolutional neural network based methods have been used to address the challenges of road damage detection and classification. In this paper, we propose a new approach to address those challenges. This approach uses densely connected convolution networks as the backbone of the Mask R-CNN to effectively extract image feature, a feature pyramid network for combining multiple scales More >

Displaying 1-10 on page 1 of 2. Per Page