Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Predicting Users’ Latent Suicidal Risk in Social Media: An Ensemble Model Based on Social Network Relationships

    Xiuyang Meng1,2, Chunling Wang1,2,*, Jingran Yang1,2, Mairui Li1,2, Yue Zhang1,2, Luo Wang1,2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4259-4281, 2024, DOI:10.32604/cmc.2024.050325 - 20 June 2024

    Abstract Suicide has become a critical concern, necessitating the development of effective preventative strategies. Social media platforms offer a valuable resource for identifying signs of suicidal ideation. Despite progress in detecting suicidal ideation on social media, accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge. To tackle this, we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships (TCNN-SN). This model enhances predictive performance by leveraging social network relationship features More >

  • Open Access

    ARTICLE

    Type 2 Diabetes Risk Prediction Using Deep Convolutional Neural Network Based-Bayesian Optimization

    Alawi Alqushaibi1,2,*, Mohd Hilmi Hasan1,2, Said Jadid Abdulkadir1,2, Amgad Muneer1,2, Mohammed Gamal1,2, Qasem Al-Tashi3, Shakirah Mohd Taib1,2, Hitham Alhussian1,2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3223-3238, 2023, DOI:10.32604/cmc.2023.035655 - 31 March 2023

    Abstract Diabetes mellitus is a long-term condition characterized by hyperglycemia. It could lead to plenty of difficulties. According to rising morbidity in recent years, the world’s diabetic patients will exceed 642 million by 2040, implying that one out of every ten persons will be diabetic. There is no doubt that this startling figure requires immediate attention from industry and academia to promote innovation and growth in diabetes risk prediction to save individuals’ lives. Due to its rapid development, deep learning (DL) was used to predict numerous diseases. However, DL methods still suffer from their limited prediction… More >

  • Open Access

    ARTICLE

    Heart Disease Risk Prediction Expending of Classification Algorithms

    Nisha Mary1, Bilal Khan1, Abdullah A. Asiri2, Fazal Muhammad3,*, Salman Khan3, Samar Alqhtani4, Khlood M. Mehdar5, Hanan Talal Halwani4, Muhammad Irfan6, Khalaf A. Alshamrani2

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6595-6616, 2022, DOI:10.32604/cmc.2022.032384 - 28 July 2022

    Abstract Heart disease prognosis (HDP) is a difficult undertaking that requires knowledge and expertise to predict early on. Heart failure is on the rise as a result of today’s lifestyle. The healthcare business generates a vast volume of patient records, which are challenging to manage manually. When it comes to data mining and machine learning, having a huge volume of data is crucial for getting meaningful information. Several methods for predicting HD have been used by researchers over the last few decades, but the fundamental concern remains the uncertainty factor in the output data, as well… More >

  • Open Access

    ARTICLE

    Investigating of Classification Algorithms for Heart Disease Risk Prediction

    Nisha Mary1, Bilal Khan1,*, Abdullah A Asiri2, Fazal Muhammad3, Samar Alqhtani4, Khlood M Mehdar5, Hanan Talal Halwani4, Turki Aleyani4, Khalaf A Alshamrani2

    Journal of Intelligent Medicine and Healthcare, Vol.1, No.1, pp. 11-31, 2022, DOI:10.32604/jimh.2022.030161 - 14 June 2022

    Abstract Prognosis of HD is a complex task that requires experience and expertise to predict in the early stage. Nowadays, heart failure is rising due to the inherent lifestyle. The healthcare industry generates dense records of patients, which cannot be managed manually. Such an amount of data is very significant in the field of data mining and machine learning when gathering valuable knowledge. During the last few decades, researchers have used different approaches for the prediction of HD, but still, the major problem is the uncertainty factor in the output data and also there is a… More >

  • Open Access

    ARTICLE

    Risk Prediction of Aortic Dissection Operation Based on Boosting Trees

    Ling Tan1, Yun Tan2, Jiaohua Qin2, Hao Tang1,*, Xuyu Xiang2, Dongshu Xie1, Neal N. Xiong3

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2583-2598, 2021, DOI:10.32604/cmc.2021.017779 - 21 July 2021

    Abstract During the COVID-19 pandemic, the treatment of aortic dissection has faced additional challenges. The necessary medical resources are in serious shortage, and the preoperative waiting time has been significantly prolonged due to the requirement to test for COVID-19 infection. In this work, we focus on the risk prediction of aortic dissection surgery under the influence of the COVID-19 pandemic. A general scheme of medical data processing is proposed, which includes five modules, namely problem definition, data preprocessing, data mining, result analysis, and knowledge application. Based on effective data preprocessing, feature analysis and boosting trees, our More >

  • Open Access

    ARTICLE

    A Mortality Risk Assessment Approach on ICU Patients Clinical Medication Events Using Deep Learning

    Dejia Shi1, Hanzhong Zheng2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 161-181, 2021, DOI:10.32604/cmes.2021.014917 - 28 June 2021

    Abstract ICU patients are vulnerable to medications, especially infusion medications, and the rate and dosage of infusion drugs may worsen the condition. The mortality prediction model can monitor the real-time response of patients to drug treatment, evaluate doctors’ treatment plans to avoid severe situations such as inverse Drug-Drug Interactions (DDI), and facilitate the timely intervention and adjustment of doctor’s treatment plan. The treatment process of patients usually has a time-sequence relation (which usually has the missing data problem) in patients’ treatment history. The state-of-the-art method to model such time-sequence is to use Recurrent Neural Network (RNN).… More >

  • Open Access

    ARTICLE

    Accuracy of risk prediction scores in pregnant women with congenital heart disease

    Yuli Y. Kim1,2, Leah A. Goldberg2, Katherine Awh2, Tanmay Bhamare1,2, David Drajpuch2, Adi Hirshberg3, Sara L. Partington1,2, Rachel Rogers4, Emily Ruckdeschel1,2, Lynda Tobin1, Morgan Venuti2, Lisa D. Levine3

    Congenital Heart Disease, Vol.14, No.3, pp. 470-478, 2019, DOI:10.1111/chd.12750

    Abstract Objective: To assess performance of risk stratification schemes in predicting adverse cardiac outcomes in pregnant women with congenital heart disease (CHD) and to compare these schemes to clinical factors alone.
    Design: Single‐center retrospective study.
    Setting: Tertiary care academic hospital.
    Patients: Women ≥18 years with International Classification of Diseases, Ninth Revision, Clinical Modification codes indicating CHD who delivered between 1998 and 2014. CARPREG I and ZAHARA risk scores and modified World Health Organization (WHO) criteria were applied to each woman.
    Outcome Measures: The primary outcome was defined by ≥1 of the following: arrhyth‐ mia, heart failure/pulmonary edema, transient ischemic attack, stroke,… More >

Displaying 1-10 on page 1 of 7. Per Page