Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Influences of Multi-Component Supplementary Cementitious Materials on the Performance of Metakaolin Based Geopolymer

    Wu Jing1,2,#, Ren Luo3,#, Sha Ding2, Ping Duan3,4,5,6,7,*

    Journal of Renewable Materials, Vol.10, No.7, pp. 1813-1828, 2022, DOI:10.32604/jrm.2022.018771 - 07 March 2022

    Abstract In this study, the workability and reaction mechanism of metakaolin (MK) based geopolymer blended with rice husk ash (RHA) and silica fume (SF) was investigated. The prepared samples were subjected to tests including compressive strength and fluidity tests. X-ray diffraction (XRD) and Scanning electron microscope (SEM) were employed to explore the phase composition and microstructure of geopolymers. The molecular bonding information of geopolymer was provided by Fourier transform infrared spectroscopy (FTIR). Meanwhile, the porosity of geopolymer was obtained by Mercury intrusion porosimeter (MIP) analysis. The high-activity RHA obtained after calcination at 600°C was used as More > Graphic Abstract

    Influences of Multi-Component Supplementary Cementitious Materials on the Performance of Metakaolin Based Geopolymer

  • Open Access

    ARTICLE

    Synthesis of poly(ω-pentadecalactone) using Lipase Immobilized onto a Renewable Carrier, Rice husk ash and their Characterization

    CANSU ULKER TURAN1,*, YUKSEL GUVENILIR1

    Journal of Polymer Materials, Vol.38, No.3-4, pp. 271-280, 2021, DOI:10.32381/JPM.2021.38.3-4.8

    Abstract Rice husk ash is a side-product of rice production; thus, it is a cheap, abundant, and renewable material, and utilized as an enzyme carrier to immobilize Candida antarctica lipase B. In this study, Candida antarctica lipase B immobilized onto rice husk ashes was used to catalyze ring opening polymerization of 16-membered lactone, ω-pentadecalactone. In order to determine the best polymerization conditions for highest molar mass polymer, reactions were proceeded at various temperatures and time periods. The best reaction conditions were obtained as 80°C and 6 hours (Mn = 34255 g mol-1). Molecular structure of this polymer More >

  • Open Access

    ARTICLE

    Combined Recycling of White Rice Husk Ash as Cement Replacement and Metal Furnace Slag as Coarse-Aggregate Replacement to Produce Self-Consolidating Concrete

    Naphol Yoobanpot1,*, Prakasit Sokrai2, Natt Makul2

    Journal of Renewable Materials, Vol.9, No.11, pp. 2033-2049, 2021, DOI:10.32604/jrm.2021.015849 - 04 June 2021

    Abstract According to empirical evidence, high levels of energy and considerable amounts of natural resources are used in the production of concrete. Given the context, this study explores self-consolidating concrete (SCC) that includes rice husk ash (RHA) and metal furnace slag (MFS) as an alternative to cement and the natural aggregates in standard SCC mixes. In this study, mixture designs are investigated with 20 wt.% of RHA, 10–30 wt.% of MFS and water-to-powder material ratios of 0.30 and 0.40. Based on the findings regarding the fresh-state, hardened-state, and durability properties of the resulting SCC mixes, it More >

  • Open Access

    ARTICLE

    Studies on Physical Chemistry of Rubber-Rice Husk Ash Composites

    V. Subrahmanian1,*, M. Albert Noble Einstien2

    Journal of Renewable Materials, Vol.7, No.2, pp. 171-192, 2019, DOI:10.32604/jrm.2019.00090

    Abstract Nowadays an alternate source of filler from renewable and plant derivatives are being thought of in rubber industries due to their reliability, environmental and economic benefits. Rice Husk Ash (RHA) a byproduct of the rice milling industry is obtained on partial and as well as full combustion of the rice husks. This ash is a good source of silica, silicates and needle shaped carbon and hence can be used as filler for cements. In the present study, a detailed investigation was carried out to understand the RHA as reinforcing material using mechanical properties and fractography… More >

  • Open Access

    ARTICLE

    Enzymatic Synthesis of Polycaprolactone: Effect of Immobilization Mechanism of CALB on Polycaprolactone Synthesis

    Yasemin Kaptan, M.Sc.1,*, Yüksel Avcıbaşı-Güvenilir1

    Journal of Renewable Materials, Vol.6, No.6, pp. 619-629, 2018, DOI:10.32604/JRM.2018.00142

    Abstract Surface-modified rice husk ash was used as an inorganic support material for immobilization of Candida antarctica lipase B. (3-aminopropyl) trimethoxysilane was used for surface modification. Immobilization of CALB was performed via both physical adsorption and cross-linking. PCL synthesis was carried out by using these immobilized enzymes, free enzyme and Novozyme 435®. Molecular weight distribution of polymer samples was obtained by gel permeation chromatography (GPC) and chain structures of the polymer samples were observed by hydrogen nuclear magnetic resonance (1H-NMR). The highest monomer conversion is generally obtained by using cross-linked enzyme, around 90%. PDI values for More >

  • Open Access

    ARTICLE

    Enzymatic Synthesis and Characterization of Biodegradable Poly(w-pentadecalactone-co-e-caprolactone) Copolymers

    Cansu Ulker*, Yuksel Guvenilir

    Journal of Renewable Materials, Vol.6, No.6, pp. 591-598, 2018, DOI:10.7569/JRM.2017.634189

    Abstract As an alternative biodegradable aliphatic polyester, poly(w-pentadecalactone-co-ε-caprolactone) copolymer was synthesized via enzymatic ring-opening polymerization. A new biocatalyst, Candida antarctica lipase B, immobilized onto rice husk ash was used for catalysis. Reactions were carried out at various temperatures and periods for varied copolymer compositions in order to obtain the highest molecular weight copolymer. The best reaction parameters were found to be 80 °C and 6 hours and molecular weights increased proportionally with the amount of w-pentadecalactone (w-PDL). The molecular structure of copolymer with 75% weight ratio of w-PDL (Mn = 19720 g/mol) was characterized by proton More >

  • Open Access

    ARTICLE

    Biogenic Amorphous Silica as Filler for Elastomers

    Nikolay Dishovsky1*, Petrunka Malinova1, Ivan Uzunov2

    Journal of Renewable Materials, Vol.6, No.4, pp. 402-412, 2018, DOI:10.7569/JRM.2017.634171

    Abstract Natural products from agricultural wastes are finding importance in the polymer industry due to their many advantages such as being lightweight, low cost and environmentally friendly. In the present study the potential of the two types of rice husk ash (RHA) prepared under different conditions as fillers in natural rubber-based elastomer composites was investigated. The fillers were prepared by rice husks incineration and characterized by means of X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) specific surface area, Hg-porosimetry and N2-adsorption. The evaluation involved determining the vulcanization characteristics… More >

Displaying 1-10 on page 1 of 7. Per Page