Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Weather Classification for Autonomous Vehicles under Adverse Conditions Using Multi-Level Knowledge Distillation

    Parthasarathi Manivannan1, Palaniyappan Sathyaprakash1, Vaithiyashankar Jayakumar2, Jayakumar Chandrasekaran3, Bragadeesh Srinivasan Ananthanarayanan4, Md Shohel Sayeed5,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4327-4347, 2024, DOI:10.32604/cmc.2024.055628 - 19 December 2024

    Abstract Achieving reliable and efficient weather classification for autonomous vehicles is crucial for ensuring safety and operational effectiveness. However, accurately classifying diverse and complex weather conditions remains a significant challenge. While advanced techniques such as Vision Transformers have been developed, they face key limitations, including high computational costs and limited generalization across varying weather conditions. These challenges present a critical research gap, particularly in applications where scalable and efficient solutions are needed to handle weather phenomena’ intricate and dynamic nature in real-time. To address this gap, we propose a Multi-level Knowledge Distillation (MLKD) framework, which leverages… More >

  • Open Access

    ARTICLE

    Image-Based Automatic Diagnostic System for Tomato Plants Using Deep Learning

    Shaheen Khatoon1,*, Md Maruf Hasan1, Amna Asif1, Majed Alshmari1, Yun-Kiam Yap2

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 595-612, 2021, DOI:10.32604/cmc.2021.014580 - 12 January 2021

    Abstract Tomato production is affected by various threats, including pests, pathogens, and nutritional deficiencies during its growth process. If control is not timely, these threats affect the plant-growth, fruit-yield, or even loss of the entire crop, which is a key danger to farmers’ livelihood and food security. Traditional plant disease diagnosis methods heavily rely on plant pathologists that incur high processing time and huge cost. Rapid and cost-effective methods are essential for timely detection and early intervention of basic food threats to ensure food security and reduce substantial economic loss. Recent developments in Artificial Intelligence (AI)… More >

Displaying 1-10 on page 1 of 2. Per Page