Parthasarathi Manivannan1, Palaniyappan Sathyaprakash1, Vaithiyashankar Jayakumar2, Jayakumar Chandrasekaran3, Bragadeesh Srinivasan Ananthanarayanan4, Md Shohel Sayeed5,*
CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4327-4347, 2024, DOI:10.32604/cmc.2024.055628
- 19 December 2024
Abstract Achieving reliable and efficient weather classification for autonomous vehicles is crucial for ensuring safety and operational effectiveness. However, accurately classifying diverse and complex weather conditions remains a significant challenge. While advanced techniques such as Vision Transformers have been developed, they face key limitations, including high computational costs and limited generalization across varying weather conditions. These challenges present a critical research gap, particularly in applications where scalable and efficient solutions are needed to handle weather phenomena’ intricate and dynamic nature in real-time. To address this gap, we propose a Multi-level Knowledge Distillation (MLKD) framework, which leverages… More >