Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (142)
  • Open Access

    ARTICLE

    A Multi-Block Material Balance Framework for Connectivity Evaluation and Optimization of Water-Drive Gas Reservoirs

    Fankun Meng1,2,3, Yuyang Liu1,2,*, Xiaohua Liu4, Chenlong Duan1,2, Yuhui Zhou1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.075865 - 06 February 2026

    Abstract Carbonate gas reservoirs are often characterized by strong heterogeneity, complex inter-well connectivity, extensive edge or bottom water, and unbalanced production, challenges that are also common in many heterogeneous gas reservoirs with intricate storage and flow behavior. To address these issues within a unified, data-driven framework, this study develops a multi-block material balance model that accounts for inter-block flow and aquifer influx, and is applicable to a wide range of reservoir types. The model incorporates inter-well and well-group conductive connectivity together with pseudo–steady-state aquifer support. The governing equations are solved using a Newton–Raphson scheme, while particle More > Graphic Abstract

    A Multi-Block Material Balance Framework for Connectivity Evaluation and Optimization of Water-Drive Gas Reservoirs

  • Open Access

    ARTICLE

    Flowback Behavior of Deep Coalbed Methane Horizontal Wells

    Wei Sun1,2, Yanqing Feng1,2,*, Yuan Wang1,2, Zengping Zhao1,2, Qian Wang2, Xiangyun Li3, Dong Feng4

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.075630 - 06 February 2026

    Abstract Significant differences exist between deep and medium-shallow coalbed methane (CBM) reservoirs. The unclear understanding of flowback and production behavior severely constrains the development of deep CBM resources. To address this challenge, guided by the gas-liquid two-phase flow theory in ultra-low permeability reservoirs, and integrating theoretical analysis, numerical simulation, and insights from production practices, this study classifies the flowback and production stages of deep CBM well considering the Daning-Jixian Block, Eastern Ordos Basin as a representative case. We summarize the flowback characteristics for each stage and establish a standard flowback production type curve, aiming to guide… More > Graphic Abstract

    Flowback Behavior of Deep Coalbed Methane Horizontal Wells

  • Open Access

    ARTICLE

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

    Xianke He1, Yuansheng Li1, Hengjie Liao1, Zhehao Jiang1, Meixue Shi1, Zhe Hu2,3, Yaowei Huang2,3, Keliu Wu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.074990 - 06 February 2026

    Abstract Weak water-drive offshore reservoirs with complex pore architecture and strong permeability heterogeneity present major challenges, including rapid depletion of formation energy, low waterflood efficiency, and significant lateral and vertical variability in crude oil properties, all of which contribute to limited recovery. To support more effective field development, alternative strategies and a deeper understanding of pore-scale flow behavior are urgently needed. In this work, CT imaging and digital image processing were used to construct a digital rock model representative of the target reservoir. A pore-scale flow model was then developed, and the Volume of Fluid (VOF)… More > Graphic Abstract

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

  • Open Access

    ARTICLE

    Gas Production and Reservoir Settlement in NGH Deposits under Horizontal-Well Depressurization

    Lijia Li, Shu Liu, Xiaoliang Huang*, Zhilin Qi

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.073294 - 06 February 2026

    Abstract Identifying geohazards such as landslides and methane leakage is crucial during gas extraction from natural gas hydrate (NGH) reservoirs, and understanding reservoir settlement behavior is central to this assessment. Horizontal wells can enlarge the pressure relief zone within the formation, improving single-well productivity, and are therefore considered a promising approach for NGH development. This study examines the settlement response of hydrate-bearing sediments during depressurization using horizontal wells. A fully coupled thermal, hydraulic, mechanical, and chemical (THMC) model with representative reservoir properties (Shenhu region in the South China Sea) is presented accordingly. The simulations show that More >

  • Open Access

    ARTICLE

    Linxing-Shenfu Gangue Interaction Coal Seam Hydraulic Fracture Cross-Layer Expansion Mechanism

    Li Wang1, Xuesong Xing1, Yanan Hou1, Heng Wen1, Ying Zhu1, Jingyu Zi1, Qingwei Zeng2,3,*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.068653 - 27 January 2026

    Abstract The deep coal reservoir in Linxing-Shenfu block of Ordos Basin is an important part of China’s coalbed methane resources. In the process of reservoir reconstruction, the artificial fracture morphology of coal seam with gangue interaction is significantly different, which affects the efficient development of coalbed methane resources in this area. In this paper, the surface outcrop of Linxing-Shenfu block is selected, and three kinds of interaction modes between gangue and coal seam are set up, including single-component coal rock sample, coal rock sample with different thicknesses of gangue layer and coal rock sample with different… More >

  • Open Access

    ARTICLE

    A New Approach for Evaluating and Optimizing Hydraulic Fracturing in Coalbed Methane Reservoirs

    Xia Yan1, Wei Wang1, Kai Shen2,*, Yanqing Feng1, Junyi Sun1, Xiaogang Li1, Wentao Zhu1, Binbin Shi1, Guanglong Sheng2,3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070360 - 27 December 2025

    Abstract In the development of coalbed methane (CBM) reservoirs using multistage fractured horizontal wells, there often exist areas that are either repeatedly stimulated or completely unstimulated between fracturing stages, leading to suboptimal reservoir performance. Currently, there is no well-established method for accurately evaluating the effectiveness of such stimulation. This study introduces, for the first time, the concept of the Fracture Network Bridging Coefficient (FNBC) as a novel metric to assess stimulation performance. By quantitatively coupling the proportions of unstimulated and overstimulated volumes, the FNBC effectively characterizes the connectivity and efficiency of the fracture network. A background… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Carbon Capture, Utilization, and Storage–Enhanced Gas Recovery

    Nan Qin1, Shaofeng Ning2,*, Zihan Zhao1,2, Yu Luo1, Bo Chen1, Xiaoxu Liu1, Yongming He2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 2997-3009, 2025, DOI:10.32604/fdmp.2025.074456 - 31 December 2025

    Abstract Balancing CO2 emission reduction with enhanced gas recovery in carbonate reservoirs remains a key challenge in subsurface energy engineering. This study focuses on the Maokou Formation gas reservoir in the Wolonghe Gas Field, Sichuan Basin, and employs a mechanistic model integrated with numerical simulations that couple CO2–water–rock geochemical interactions to systematically explore the principal engineering and chemical factors governing Carbon Capture, Utilization, and Storage–Enhanced Gas Recovery (CCUS–EGR). The analysis reveals that both the injection–production ratio and gas injection rate exhibit optimal ranges. Maximum gas output under single-parameter variation occurs at an injection–production ratio of 0.7 and… More >

  • Open Access

    ARTICLE

    Sand Production in Unconsolidated Sandstone: Experimental Analysis of Multiphase Flow During Cyclic Injection and Production

    Tianen Liu1,2, Kun Dai1,2, Shiju Ren1,2, Chuanxiang Zhang1,2, Xiaoling Tang3,*, Jinghong Hu3,*, Yidong Cai3, Jun Lu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 2981-2995, 2025, DOI:10.32604/fdmp.2025.073859 - 31 December 2025

    Abstract Many mature onshore oilfields have entered a high-water-cut stage, with reservoir recovery approaching economic limits. Converting these depleted or nearly depleted reservoirs into underground gas storage (UGS) facilities offers an efficient way to leverage their substantial storage potential. During cyclic gas injection and withdrawal, however, the reservoir experiences complex three-phase flow and repeated stress fluctuations, which can induce rock fatigue, inelastic deformation, and ultimately sand production. This study uses controlled physical experiments to simulate sand production in reservoir rocks subjected to alternating gas injection and production under three-phase conditions. After preparing oil-water-saturated cores through waterflooding,… More > Graphic Abstract

    Sand Production in Unconsolidated Sandstone: Experimental Analysis of Multiphase Flow During Cyclic Injection and Production

  • Open Access

    ARTICLE

    A Dynamic IPR Framework for Predicting Shale Oil Well Productivity in the Spontaneous Flow Stage

    Sheng Lei1,2,3, Guanglong Sheng1,2,3,*, Hui Zhao1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3011-3031, 2025, DOI:10.32604/fdmp.2025.073802 - 31 December 2025

    Abstract This study investigates the unsteady flow characteristics of shale oil reservoirs during the depletion development process, with a particular focus on production behavior following fracturing and shut-in stages. Shale reservoirs exhibit distinctive production patterns that differ from traditional oil reservoirs, as their inflow performance does not conform to the classic steady-state relationship. Instead, production is governed by unsteady-state flow behavior, and the combined effects of the wellbore and choke cause the inflow performance curve to evolve dynamically over time. To address these challenges, this study introduces the concept of a “Dynamic IPR curve” and develops… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Microscopic Seepage Mechanisms in Gas Reservoir Storage Systems

    Yulong Zhao1, Yang Luo1,*, Yuming Luo2, Yulai Pang2, Ruihan Zhang1, Zihan Zhao3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3073-3090, 2025, DOI:10.32604/fdmp.2025.070685 - 31 December 2025

    Abstract The development of underground gas storage (UGS) systems is vital for maintaining stability between energy supply and demand. This study explores the dynamic response mechanisms of carbonate reservoirs subjected to intense injection–production cycling during UGS operations. By integrating three-dimensional digital core technology with a coupled poro-mechanical model, we simulate the pore-scale behavior of a representative Huangcaoxia UGS carbonate core. The results demonstrate that fluid–solid coupling effects markedly amplify permeability reduction, far exceeding the influence of porosity variations alone. More significantly, gas production leads to a pronounced decline in permeability driven by rising effective stress, arising More >

Displaying 1-10 on page 1 of 142. Per Page