Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Hybrid Deep Learning Approach for Automating App Review Classification: Advancing Usability Metrics Classification with an Aspect-Based Sentiment Analysis Framework

    Nahed Alsaleh1,2, Reem Alnanih1,*, Nahed Alowidi1

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 949-976, 2025, DOI:10.32604/cmc.2024.059351 - 03 January 2025

    Abstract App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their products. Automating the analysis of these reviews is vital for efficient review management. While traditional machine learning (ML) models rely on basic word-based feature extraction, deep learning (DL) methods, enhanced with advanced word embeddings, have shown superior performance. This research introduces a novel aspect-based sentiment analysis (ABSA) framework to classify app reviews based on key non-functional requirements, focusing on usability factors: effectiveness, efficiency, and satisfaction. We propose a hybrid DL model, combining BERT (Bidirectional Encoder Representations from Transformers) More >

Displaying 1-10 on page 1 of 1. Per Page