Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    FIBTNet: Building Change Detection for Remote Sensing Images Using Feature Interactive Bi-Temporal Network

    Jing Wang1,2,*, Tianwen Lin1, Chen Zhang1, Jun Peng1,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4621-4641, 2024, DOI:10.32604/cmc.2024.053206 - 12 September 2024

    Abstract In this paper, a feature interactive bi-temporal change detection network (FIBTNet) is designed to solve the problem of pseudo change in remote sensing image building change detection. The network improves the accuracy of change detection through bi-temporal feature interaction. FIBTNet designs a bi-temporal feature exchange architecture (EXA) and a bi-temporal difference extraction architecture (DFA). EXA improves the feature exchange ability of the model encoding process through multiple space, channel or hybrid feature exchange methods, while DFA uses the change residual (CR) module to improve the ability of the model decoding process to extract different features More >

  • Open Access

    ARTICLE

    ConvNeXt-UperNet-Based Deep Learning Model for Road Extraction from High-Resolution Remote Sensing Images

    Jing Wang1,2,*, Chen Zhang1, Tianwen Lin1

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1907-1925, 2024, DOI:10.32604/cmc.2024.052597 - 15 August 2024

    Abstract When existing deep learning models are used for road extraction tasks from high-resolution images, they are easily affected by noise factors such as tree and building occlusion and complex backgrounds, resulting in incomplete road extraction and low accuracy. We propose the introduction of spatial and channel attention modules to the convolutional neural network ConvNeXt. Then, ConvNeXt is used as the backbone network, which cooperates with the perceptual analysis network UPerNet, retains the detection head of the semantic segmentation, and builds a new model ConvNeXt-UPerNet to suppress noise interference. Training on the open-source DeepGlobe and CHN6-CUG… More >

  • Open Access

    ARTICLE

    Fine-Grained Ship Recognition Based on Visible and Near-Infrared Multimodal Remote Sensing Images: Dataset, Methodology and Evaluation

    Shiwen Song, Rui Zhang, Min Hu*, Feiyao Huang

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5243-5271, 2024, DOI:10.32604/cmc.2024.050879 - 20 June 2024

    Abstract Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security. Currently, with the emergence of massive high-resolution multi-modality images, the use of multi-modality images for fine-grained recognition has become a promising technology. Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples. The key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more discriminative fusion features. The attention mechanism helps the model to pinpoint the key information in the image, resulting in a… More >

  • Open Access

    ARTICLE

    CrossFormer Embedding DeepLabv3+ for Remote Sensing Images Semantic Segmentation

    Qixiang Tong, Zhipeng Zhu, Min Zhang, Kerui Cao, Haihua Xing*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1353-1375, 2024, DOI:10.32604/cmc.2024.049187 - 25 April 2024

    Abstract High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presence of occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the difficulty of segmentation. In this paper, an improved network with a cross-region self-attention mechanism for multi-scale features based on DeepLabv3+ is designed to address the difficulties of small object segmentation and blurred target edge segmentation. First, we use CrossFormer as the backbone feature extraction network to achieve the interaction between large- and small-scale features, and establish self-attention associations between features at both large and small… More >

  • Open Access

    ARTICLE

    Weakly Supervised Network with Scribble-Supervised and Edge-Mask for Road Extraction from High-Resolution Remote Sensing Images

    Supeng Yu1, Fen Huang1,*, Chengcheng Fan2,3,4,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 549-562, 2024, DOI:10.32604/cmc.2024.048608 - 25 April 2024

    Abstract Significant advancements have been achieved in road surface extraction based on high-resolution remote sensing image processing. Most current methods rely on fully supervised learning, which necessitates enormous human effort to label the image. Within this field, other research endeavors utilize weakly supervised methods. These approaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such as scribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised and edge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equipped with a distinct decoder module dedicated… More >

  • Open Access

    ARTICLE

    An Intelligent Detection Method for Optical Remote Sensing Images Based on Improved YOLOv7

    Chao Dong, Xiangkui Jiang*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3015-3036, 2023, DOI:10.32604/cmc.2023.044735 - 26 December 2023

    Abstract To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images, this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds, called DI-YOLO, based on You Only Look Once v7-tiny (YOLOv7-tiny). Firstly, to enhance the model’s ability to capture irregular-shaped objects and deformation features, as well as to extract high-level semantic information, deformable convolutions are used to replace standard convolutions in the original model. Secondly, a Content Coordination Attention Feature Pyramid Network (CCA-FPN) structure is designed to replace the… More >

  • Open Access

    ARTICLE

    A Consistent Mistake in Remote Sensing Images’ Classification Literature

    Huaxiang Song*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1381-1398, 2023, DOI:10.32604/iasc.2023.039315 - 21 June 2023

    Abstract Recently, the convolutional neural network (CNN) has been dominant in studies on interpreting remote sensing images (RSI). However, it appears that training optimization strategies have received less attention in relevant research. To evaluate this problem, the author proposes a novel algorithm named the Fast Training CNN (FST-CNN). To verify the algorithm’s effectiveness, twenty methods, including six classic models and thirty architectures from previous studies, are included in a performance comparison. The overall accuracy (OA) trained by the FST-CNN algorithm on the same model architecture and dataset is treated as an evaluation baseline. Results show that… More >

  • Open Access

    ARTICLE

    Optimizing Spatial Relationships in GCN to Improve the Classification Accuracy of Remote Sensing Images

    Zimeng Yang, Qiulan Wu, Feng Zhang*, Xuefei Chen, Weiqiang Wang, Xueshen Zhang

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 491-506, 2023, DOI:10.32604/iasc.2023.037558 - 29 April 2023

    Abstract Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation. With the continuous development of artificial intelligence technology, the use of deep learning methods for interpreting remote-sensing images has matured. Existing neural networks disregard the spatial relationship between two targets in remote sensing images. Semantic segmentation models that combine convolutional neural networks (CNNs) and graph convolutional neural networks (GCNs) cause a lack of feature boundaries, which leads to the unsatisfactory segmentation of various target feature boundaries. In this paper, we propose a new semantic segmentation model for remote… More >

  • Open Access

    ARTICLE

    Parameter Tuned Deep Learning Based Traffic Critical Prediction Model on Remote Sensing Imaging

    Sarkar Hasan Ahmed1, Adel Al-Zebari2, Rizgar R. Zebari3, Subhi R. M. Zeebaree4,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3993-4008, 2023, DOI:10.32604/cmc.2023.037464 - 31 March 2023

    Abstract Remote sensing (RS) presents laser scanning measurements, aerial photos, and high-resolution satellite images, which are utilized for extracting a range of traffic-related and road-related features. RS has a weakness, such as traffic fluctuations on small time scales that could distort the accuracy of predicted road and traffic features. This article introduces an Optimal Deep Learning for Traffic Critical Prediction Model on High-Resolution Remote Sensing Images (ODLTCP-HRRSI) to resolve these issues. The presented ODLTCP-HRRSI technique majorly aims to forecast the critical traffic in smart cities. To attain this, the presented ODLTCP-HRRSI model performs two major processes. More >

  • Open Access

    ARTICLE

    Novel Vegetation Mapping Through Remote Sensing Images Using Deep Meta Fusion Model

    S. Vijayalakshmi*, S. Magesh Kumar

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2915-2931, 2023, DOI:10.32604/iasc.2023.034165 - 15 March 2023

    Abstract Preserving biodiversity and maintaining ecological balance is essential in current environmental conditions. It is challenging to determine vegetation using traditional map classification approaches. The primary issue in detecting vegetation pattern is that it appears with complex spatial structures and similar spectral properties. It is more demandable to determine the multiple spectral analyses for improving the accuracy of vegetation mapping through remotely sensed images. The proposed framework is developed with the idea of ensembling three effective strategies to produce a robust architecture for vegetation mapping. The architecture comprises three approaches, feature-based approach, region-based approach, and texture-based… More >

Displaying 1-10 on page 1 of 24. Per Page