Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    A Hybrid Approach for Predicting the Remaining Useful Life of Bearings Based on the RReliefF Algorithm and Extreme Learning Machine

    Sen-Hui Wang1,2,*, Xi Kang1, Cheng Wang1, Tian-Bing Ma1, Xiang He2, Ke Yang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1405-1427, 2024, DOI:10.32604/cmes.2024.049281 - 20 May 2024

    Abstract Accurately predicting the remaining useful life (RUL) of bearings in mining rotating equipment is vital for mining enterprises. This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features. This study proposes a hybrid predictive model to assess the RUL of rolling element bearings. The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features. The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm. Subsequently,… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Features PSO-ReliefF Based Classification of Brain Tumor

    Alaa Khalid Alduraibi*

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 1295-1309, 2022, DOI:10.32604/iasc.2022.026601 - 03 May 2022

    Abstract With technological advancements, deep machine learning can assist doctors in identifying the brain mass or tumor using magnetic resonance imaging (MRI). This work extracts the deep features from 18-pre-trained convolutional neural networks (CNNs) to train the classical classifiers to categorize the brain MRI images. As a result, DenseNet-201, EfficientNet-b0, and DarkNet-53 deep features trained support vector machine (SVM) model shows the best accuracy. Furthermore, the ReliefF method is applied to extract the best features. Then, the fitness function is defined to select the number of nearest neighbors of ReliefF algorithm and feature vector size. Finally, More >

  • Open Access

    ARTICLE

    Automatic Sleep Staging Based on EEG-EOG Signals for Depression Detection

    Jiahui Pan1,6,*, Jianhao Zhang1, Fei Wang1,6, Wuhan Liu2, Haiyun Huang3,6, Weishun Tang3, Huijian Liao4, Man Li5, Jianhui Wu1, Xueli Li2, Dongming Quan2, Yuanqing Li3,6

    Intelligent Automation & Soft Computing, Vol.28, No.1, pp. 53-71, 2021, DOI:10.32604/iasc.2021.015970 - 17 March 2021

    Abstract In this paper, an automatic sleep scoring system based on electroencephalogram (EEG) and electrooculogram (EOG) signals was proposed for sleep stage classification and depression detection. Our automatic sleep stage classification method contained preprocessing based on independent component analysis, feature extraction including spectral features, spectral edge frequency features, absolute spectral power, statistical features, Hjorth features, maximum-minimum distance and energy features, and a modified ReliefF feature selection. Finally, a support vector machine was employed to classify four states (awake, light sleep [LS], slow-wave sleep [SWS] and rapid eye movement [REM]). The overall accuracy of the Sleep-EDF database More >

  • Open Access

    ARTICLE

    RP-NBSR: A Novel Network Attack Detection Model Based on Machine Learning

    Zihao Shen1,2, Hui Wang1,*, Kun Liu1, Peiqian Liu1, Menglong Ba1, MengYao Zhao3

    Computer Systems Science and Engineering, Vol.37, No.1, pp. 121-133, 2021, DOI:10.32604/csse.2021.014988 - 05 February 2021

    Abstract The rapid progress of the Internet has exposed networks to an increased number of threats. Intrusion detection technology can effectively protect network security against malicious attacks. In this paper, we propose a ReliefF-P-Naive Bayes and softmax regression (RP-NBSR) model based on machine learning for network attack detection to improve the false detection rate and F1 score of unknown intrusion behavior. In the proposed model, the Pearson correlation coefficient is introduced to compensate for deficiencies in correlation analysis between features by the ReliefF feature selection algorithm, and a ReliefF-Pearson correlation coefficient (ReliefF-P) algorithm is proposed. Then, More >

  • Open Access

    ARTICLE

    Air Quality Prediction Based on Kohonen Clustering and ReliefF Feature Selection

    Bolun Chen1, 2, Guochang Zhu1, *, Min Ji1, Yongtao Yu1, Jianyang Zhao1, Wei Liu3

    CMC-Computers, Materials & Continua, Vol.64, No.2, pp. 1039-1049, 2020, DOI:10.32604/cmc.2020.010583 - 10 June 2020

    Abstract Air quality prediction is an important part of environmental governance. The accuracy of the air quality prediction also affects the planning of people’s outdoor activities. How to mine effective information from historical data of air pollution and reduce unimportant factors to predict the law of pollution change is of great significance for pollution prevention, pollution control and pollution early warning. In this paper, we take into account that there are different trends in air pollutants and that different climatic factors have different effects on air pollutants. Firstly, the data of air pollutants in different cities… More >

Displaying 1-10 on page 1 of 5. Per Page