Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (43)
  • Open Access

    ARTICLE

    Coupling Effect of Cryogenic Freeze-Thaw Cycles and Chloride Ion Erosion Effect in Pre-Cracked Reinforced Concrete

    Yang Li, Sibo Jiang*, Ruixin Lan

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 255-276, 2024, DOI:10.32604/sdhm.2024.047776 - 15 May 2024

    Abstract Chloride (Cl) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas (LNG) storage tanks and other polar offshore structures. This study investigates the impact of different low-temperature cycles (20°C, –80°C, and −160°C) and concrete specimen crack widths (0, 0.3, and 0.6 mm) on the Cl ion diffusion performance through rapid erosion tests conducted on pre-cracked concrete. The results show that the minimum temperature and crack width of freeze-thaw cycles enhance the erosive effect of chloride ions. The Cl ion concentration and growth rate increased with the increasing crack More > Graphic Abstract

    Coupling Effect of Cryogenic Freeze-Thaw Cycles and Chloride Ion Erosion Effect in Pre-Cracked Reinforced Concrete

  • Open Access

    ARTICLE

    Numerical Exploration of Asymmetrical Impact Dynamics: Unveiling Nonlinearities in Collision Problems and Resilience of Reinforced Concrete Structures

    AL-Bukhaiti Khalil1, Yanhui Liu1,*, Shichun Zhao1, Daguang Han2

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 223-254, 2024, DOI:10.32604/sdhm.2024.044751 - 15 May 2024

    Abstract This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing on geometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision. The initial discussion revolves around the stress and strain of large deformation during a collision, followed by explanations of the fundamental finite element solution method for addressing such issues. The hourglass mode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailed and implemented within the finite element framework. The paper further investigates the dynamic response and failure modes of Reinforced Concrete (RC)… More >

  • Open Access

    ARTICLE

    Bond-Slip Behavior of Steel Bar and Recycled Steel Fibre-Reinforced Concrete

    Ismail Shah1,2, Jing Li1,3,4,*, Nauman Khan5, Hamad R. Almujibah6, Muhammad Mudassar Rehman2, Ali Raza7, Yun Peng3,4

    Journal of Renewable Materials, Vol.12, No.1, pp. 167-186, 2024, DOI:10.32604/jrm.2023.031503 - 23 January 2024

    Abstract Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability. It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics. This study examines the key influencing factors that affect the behavior of this material, such as the steel fiber volume ratio, recycled aggregate replacement rate, concrete strength grade, anchorage length, and stirrup constraint. The study investigates the bond failure morphology, bond-slip, and bond strength constitutive relationship of steel fiber recycled concrete. The results show that the addition of steel fibers at 0.5%,… More >

  • Open Access

    ARTICLE

    Simulation of Corrosion-Induced Cracking of Reinforced Concrete Based on Fracture Phase Field Method

    Xiaozhou Xia1, Changsheng Qin1, Guangda Lu2, Xin Gu1,*, Qing Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2257-2276, 2024, DOI:10.32604/cmes.2023.031238 - 15 December 2023

    Abstract Accurate simulation of the cracking process caused by rust expansion of reinforced concrete (RC) structures plays an intuitive role in revealing the corrosion-induced failure mechanism. Considering the quasi-brittle fracture of concrete, the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model. The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load. Then, the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC. The cracking patterns caused by non-uniform corrosion expansion are… More >

  • Open Access

    ARTICLE

    An Analysis of the Dynamic Behavior of Damaged Reinforced Concrete Bridges under Moving Vehicle Loads by Using the Moving Mesh Technique

    Fabrizio Greco*, Paolo Lonetti, Arturo Pascuzzo, Giulia Sansone

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 457-483, 2023, DOI:10.32604/sdhm.2023.030075 - 17 November 2023

    Abstract This work proposes a numerical investigation on the effects of damage on the structural response of Reinforced Concrete (RC) bridge structures commonly adopted in highway and railway networks. An effective three-dimensional FE-based numerical model is developed to analyze the bridge’s structural response under several damage scenarios, including the effects of moving vehicle loads. In particular, the longitudinal and transversal beams are modeled through solid finite elements, while horizontal slabs are made of shell elements. Damage phenomena are also incorporated in the numerical model according to a smeared approach consistent with Continuum Damage Mechanics (CDM). In… More >

  • Open Access

    ARTICLE

    Influence of Vertical Irregularity on the Seismic Behavior of Base Isolated RC Structures with Lead Rubber Bearings under Pulse-Like Earthquakes

    Ali Mahamied1, Amjad A. Yasin1, Yazan Alzubi1,*, Jamal Al Adwan1, Issa Mahamied2

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 501-519, 2023, DOI:10.32604/sdhm.2023.028686 - 17 November 2023

    Abstract Nowadays, an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literature. On the other hand, investigations regarding the irregular base-isolated reinforced concrete structures’ performance when subjected to pulse-like earthquakes are very scarce. The severity of pulse-like earthquakes emerges from their ability to destabilize the base-isolated structure by remarkably increasing the displacement demands. Thus, this study is intended to investigate the effects of pulse-like earthquake characteristics on the behavior of low-rise irregular base-isolated reinforced concrete More >

  • Open Access

    ARTICLE

    Determination of Reflected Temperature in Active Thermography Measurements for Corrosion Quantification of Reinforced Concrete Elements

    Suyadi Kartorono*, Herlien Dwiarti Setio, Adang Surahman, Ediansjah Zulkifli

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 195-208, 2023, DOI:10.32604/sdhm.2022.023259 - 25 June 2023

    Abstract This paper sums up the determining analysis of the measuring location of Trefl using a thermocouple during the thermography tests. Laboratory temperature distribution testing methods, analysis of value and location of Trefl measurement are explained in this paper. The heat source is two halogen lamps of 500 watts each fitted at a distance of 30–50 cm. Noises appearing during testing of thermography are corrected with measured Trefl value. The results of thermogram correction of corroded concrete surfaces using Trefl values are displayed in this paper too. The concrete surface temperature results of quantitative image processing method are More >

  • Open Access

    ARTICLE

    Numerical Approach to Simulate the Effect of Corrosion Damage on the Natural Frequency of Reinforced Concrete Structures

    Amthal Hakim1, Wael Slika1,*, Rawan Machmouchi1, Adel Elkordi2

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 175-194, 2023, DOI:10.32604/sdhm.2022.023027 - 25 June 2023

    Abstract Corrosion of reinforcing steel in concrete elements causes minor to major damage in different aspects. It may lead to spalling of concrete cover, reduction of section’s capacity and can alter the dynamic properties. For the dynamic properties, natural frequency is to be a reliable indicator of structural integrity that can be utilized in non-destructive corrosion assessment. Although the correlation between natural frequency and corrosion damage has been reflected in different experimental programs, few attempts have been made to investigate this relationship in forward modeling and/or structural health monitoring techniques. This can be attributed to the… More >

  • Open Access

    ARTICLE

    Experimental Study and Failure Criterion Analysis of Rubber Fibre Reinforced Concrete under Biaxial Compression-Compression

    Yanli Hu1,2, Peiwei Gao3,*, Furong Li4, Zhiqing Zhao5, Zhenpeng Yu6

    Journal of Renewable Materials, Vol.11, No.4, pp. 2055-2073, 2023, DOI:10.32604/jrm.2022.023612 - 01 December 2022

    Abstract In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete (RFRC), an experimental study on RFRC under different lateral compressive stresses was carried out by considering different rubber replacement rates and polypropylene fibre contents. The failure modes and mechanical property parameters of different RFRC working conditions were obtained from the experiment to explore the effects of rubber replacement rate and polypropylene fibre content on the biaxial compression-compression properties of RFRC. The following conclusions were drawn. Under the influence of lateral compressive stress, the biaxial compression-compression failure mode gradually developed from a columnar… More >

  • Open Access

    ARTICLE

    Investigating the Retrofit of RC Frames Using TADAS Yielding Dampers

    Mehrzad TahamouliRoudsari1,*, K. Cheraghi2, R. Aghayari2

    Structural Durability & Health Monitoring, Vol.16, No.4, pp. 343-359, 2022, DOI:10.32604/sdhm.2022.07927 - 03 January 2023

    Abstract TADAS dampers are a type of passive structural control system used in the seismic design or retrofitting of structures. These types of dampers are designed so that they would yield before the main components of the structure during earthquake. This dissipates a large portion of the earthquake’s energy and reduces the energy dissipation demand in the main components of the structure. Considering its suitable performance, this damper has been the subject of numerous studies. However, there are still ambiguities regarding the effect of the number of these dampers on the retrofitting of reinforced concrete (RC)… More >

Displaying 1-10 on page 1 of 43. Per Page