Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Evaluation of Various Modification Methods for Enhancing the Performance of Recycled Concrete Aggregate

    Xiaoyan Liu1,*, Li Liu1, Junqing Zuo2, Pingzhong Zhao1, Xian Xie1, Shijie Li1, Kai Lyu3,*, Chunying Wu4, Surendra P. Shah5

    Journal of Renewable Materials, Vol.10, No.10, pp. 2685-2698, 2022, DOI:10.32604/jrm.2022.019527 - 08 June 2022

    Abstract Due to the existence of the attached mortar, the performance of the recycled concrete aggregate (RCA) is inferior to the natural aggregate, which significantly limits its wide application in industry. In this study, five kinds of modified solutions were used to modify the surface of RCA, and the modification effects were compared. The results showed that sodium silicate, nano-silica (NS), Bacillus pasteurii and soybean powder had relatively good modification effects on RCA, which could reduce the crushing value and water absorption, and increase apparent density. The composite solution (15% sodium silicate and 2% NS) and… More >

  • Open Access

    Ecological Concrete Based on Blast-Furnace Cement with Incorporated Coarse Recycled Concrete Aggregate and Fly Ash Addition

    Wojciech Kubissa1, Roman Jaskulski1, Pavel Reiterman2*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 53-61, 2017, DOI:10.7569/JRM.2017.634103

    Abstract This article deals with an experimental study concerning the development of concrete mixtures with significant ecological benefits. The studied concrete mixtures were based on blast-furnace cement, with an additional application of supplementary cementitious materials—fly ash, metakaolin, and silica fume and fluidized fly ash. Coarse aggregate in the form of crushed concrete was applied for all studied concrete mixtures. The experimental program was primarily focused on the assessment of the durability properties of the studied mixtures in terms of mechanical tests, absorption tests, chloride migration coefficient tests, water penetration tests, and accelerated carbonation depth tests. The More >

Displaying 1-10 on page 1 of 2. Per Page