Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (108)
  • Open Access

    ARTICLE

    A Recurrent Neural Network for Multimodal Anomaly Detection by Using Spatio-Temporal Audio-Visual Data

    Sameema Tariq1, Ata-Ur- Rehman2,3, Maria Abubakar2, Waseem Iqbal4, Hatoon S. Alsagri5, Yousef A. Alduraywish5, Haya Abdullah A. Alhakbani5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2493-2515, 2024, DOI:10.32604/cmc.2024.055787 - 18 November 2024

    Abstract In video surveillance, anomaly detection requires training machine learning models on spatio-temporal video sequences. However, sometimes the video-only data is not sufficient to accurately detect all the abnormal activities. Therefore, we propose a novel audio-visual spatiotemporal autoencoder specifically designed to detect anomalies for video surveillance by utilizing audio data along with video data. This paper presents a competitive approach to a multi-modal recurrent neural network for anomaly detection that combines separate spatial and temporal autoencoders to leverage both spatial and temporal features in audio-visual data. The proposed model is trained to produce low reconstruction error… More >

  • Open Access

    PROCEEDINGS

    High-Resolution Flow Field Reconstruction Based on Graph-Embedding Neural Network

    Weixin Jiang1,*, Zongze Li2, Qing Yuan3,*, Junhua Gong2, Bo Yu4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-3, 2024, DOI:10.32604/icces.2024.011266

    Abstract High resolution flow field results are of great significance for exploring physical laws and guiding practical engineering practice. However, traditional activities based on experiments or direct numerical solutions to obtain high-resolution flow fields typically require a significant amount of computational time or resources. In response to this challenge, this study proposes an efficient and robust high-resolution flow field reconstruction method by embedding graph theory into neural networks, to adapt to low data volume situations. In the high resolution flow field reconstruction problem of an NS equation, the proposed model has a lower mean squared error More >

  • Open Access

    ARTICLE

    Development of Multi-Agent-Based Indoor 3D Reconstruction

    Hoi Chuen Cheng, Frederick Ziyang Hong, Babar Hussain, Yiru Wang, Chik Patrick Yue*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 161-181, 2024, DOI:10.32604/cmc.2024.053079 - 15 October 2024

    Abstract Large-scale indoor 3D reconstruction with multiple robots faces challenges in core enabling technologies. This work contributes to a framework addressing localization, coordination, and vision processing for multi-agent reconstruction. A system architecture fusing visible light positioning, multi-agent path finding via reinforcement learning, and 360° camera techniques for 3D reconstruction is proposed. Our visible light positioning algorithm leverages existing lighting for centimeter-level localization without additional infrastructure. Meanwhile, a decentralized reinforcement learning approach is developed to solve the multi-agent path finding problem, with communications among agents optimized. Our 3D reconstruction pipeline utilizes equirectangular projection from 360° cameras to More >

  • Open Access

    ARTICLE

    Scene 3-D Reconstruction System in Scattering Medium

    Zhuoyifan Zhang1, Lu Zhang2, Liang Wang3, Haoming Wu2,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3405-3420, 2024, DOI:10.32604/cmc.2024.052144 - 15 August 2024

    Abstract Research on neural radiance fields for novel view synthesis has experienced explosive growth with the development of new models and extensions. The NeRF (Neural Radiance Fields) algorithm, suitable for underwater scenes or scattering media, is also evolving. Existing underwater 3D reconstruction systems still face challenges such as long training times and low rendering efficiency. This paper proposes an improved underwater 3D reconstruction system to achieve rapid and high-quality 3D reconstruction. First, we enhance underwater videos captured by a monocular camera to correct the image quality degradation caused by the physical properties of the water medium… More >

  • Open Access

    ARTICLE

    Personalized Lower Limb Gait Reconstruction Modeling Based on RFA-ProMP

    Chunhong Zeng, Kang Lu, Zhiqin He*, Qinmu Wu

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1441-1456, 2024, DOI:10.32604/cmc.2024.051551 - 18 July 2024

    Abstract Personalized gait curves are generated to enhance patient adaptability to gait trajectories used for passive training in the early stage of rehabilitation for hemiplegic patients. The article utilizes the random forest algorithm to construct a gait parameter model, which maps the relationship between parameters such as height, weight, age, gender, and gait speed, achieving prediction of key points on the gait curve. To enhance prediction accuracy, an attention mechanism is introduced into the algorithm to focus more on the main features. Meanwhile, to ensure high similarity between the reconstructed gait curve and the normal one, More >

  • Open Access

    ARTICLE

    BDPartNet: Feature Decoupling and Reconstruction Fusion Network for Infrared and Visible Image

    Xuejie Wang1, Jianxun Zhang1,*, Ye Tao2, Xiaoli Yuan1, Yifan Guo1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4621-4639, 2024, DOI:10.32604/cmc.2024.051556 - 20 June 2024

    Abstract While single-modal visible light images or infrared images provide limited information, infrared light captures significant thermal radiation data, whereas visible light excels in presenting detailed texture information. Combining images obtained from both modalities allows for leveraging their respective strengths and mitigating individual limitations, resulting in high-quality images with enhanced contrast and rich texture details. Such capabilities hold promising applications in advanced visual tasks including target detection, instance segmentation, military surveillance, pedestrian detection, among others. This paper introduces a novel approach, a dual-branch decomposition fusion network based on AutoEncoder (AE), which decomposes multi-modal features into intensity… More >

  • Open Access

    ARTICLE

    Research on Sarcasm Detection Technology Based on Image-Text Fusion

    Xiaofang Jin1, Yuying Yang1,*, Yinan Wu1, Ying Xu2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5225-5242, 2024, DOI:10.32604/cmc.2024.050384 - 20 June 2024

    Abstract The emergence of new media in various fields has continuously strengthened the social aspect of social media. Netizens tend to express emotions in social interactions, and many people even use satire, metaphors, and other techniques to express some negative emotions, it is necessary to detect sarcasm in social comment data. For sarcasm, the more reference data modalities used, the better the experimental effect. This paper conducts research on sarcasm detection technology based on image-text fusion data. To effectively utilize the features of each modality, a feature reconstruction output algorithm is proposed. This algorithm is based… More >

  • Open Access

    REVIEW

    Trends in Event Understanding and Caption Generation/Reconstruction in Dense Video: A Review

    Ekanayake Mudiyanselage Chulabhaya Lankanatha Ekanayake1,2, Abubakar Sulaiman Gezawa3,*, Yunqi Lei1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 2941-2965, 2024, DOI:10.32604/cmc.2024.046155 - 26 March 2024

    Abstract Video description generates natural language sentences that describe the subject, verb, and objects of the targeted Video. The video description has been used to help visually impaired people to understand the content. It is also playing an essential role in devolving human-robot interaction. The dense video description is more difficult when compared with simple Video captioning because of the object’s interactions and event overlapping. Deep learning is changing the shape of computer vision (CV) technologies and natural language processing (NLP). There are hundreds of deep learning models, datasets, and evaluations that can improve the gaps… More >

  • Open Access

    ARTICLE

    Movement Function Assessment Based on Human Pose Estimation from Multi-View

    Lingling Chen1,2,*, Tong Liu1, Zhuo Gong1, Ding Wang1

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 321-339, 2024, DOI:10.32604/csse.2023.037865 - 19 March 2024

    Abstract Human pose estimation is a basic and critical task in the field of computer vision that involves determining the position (or spatial coordinates) of the joints of the human body in a given image or video. It is widely used in motion analysis, medical evaluation, and behavior monitoring. In this paper, the authors propose a method for multi-view human pose estimation. Two image sensors were placed orthogonally with respect to each other to capture the pose of the subject as they moved, and this yielded accurate and comprehensive results of three-dimensional (3D) motion reconstruction that… More >

  • Open Access

    ARTICLE

    Isogeometric Analysis of Hyperelastic Material Characteristics for Calcified Aortic Valve

    Long Chen1, Ting Li1, Liang Liu1, Wenshuo Wang2,*, Xiaoxiao Du3, Wei Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2773-2806, 2024, DOI:10.32604/cmes.2024.046641 - 11 March 2024

    Abstract This study explores the implementation of computed tomography (CT) reconstruction and simulation techniques for patient-specific valves, aiming to dissect the mechanical attributes of calcified valves within transcatheter heart valve replacement (TAVR) procedures. In order to facilitate this exploration, it derives pertinent formulas for 3D multi-material isogeometric hyperelastic analysis based on Hounsfield unit (HU) values, thereby unlocking foundational capabilities for isogeometric analysis in calcified aortic valves. A series of uniaxial and biaxial tensile tests is executed to obtain an accurate constitutive model for calcified active valves. To mitigate discretization errors, methodologies for reconstructing volumetric parametric models, More > Graphic Abstract

    Isogeometric Analysis of Hyperelastic Material Characteristics for Calcified Aortic Valve

Displaying 1-10 on page 1 of 108. Per Page