Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (153)
  • Open Access

    ARTICLE

    Zero-Shot Vision-Based Robust 3D Map Reconstruction and Obstacle Detection in Geometry-Deficient Room-Scale Environments

    Taehoon Kim, Sehun Lee, Junho Ahn*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-30, 2026, DOI:10.32604/cmc.2025.071597 - 09 December 2025

    Abstract As large, room-scale environments become increasingly common, their spatial complexity increases due to variable, unstructured elements. Consequently, demand for room-scale service robots is surging, yet most technologies remain corridor-centric, and autonomous navigation in expansive rooms becomes unstable even around static obstacles. Existing approaches face several structural limitations. These include the labor-intensive requirement for large-scale object annotation and continual retraining, as well as the vulnerability of vanishing point or line-based methods when geometric cues are insufficient. In addition, the high cost of LiDAR and 3D perception errors caused by limited wall cues and dense interior clutter… More >

  • Open Access

    ARTICLE

    Error Analysis of Geomagnetic Field Reconstruction Model Using Negative Learning for Seismic Anomaly Detection

    Nur Syaiful Afrizal1, Khairul Adib Yusof1,2,*, Lokman Hakim Muhamad1, Nurul Shazana Abdul Hamid2,3, Mardina Abdullah2,4, Mohd Amiruddin Abd Rahman1, Syamsiah Mashohor5, Masashi Hayakawa6,7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.066421 - 09 December 2025

    Abstract Detecting geomagnetic anomalies preceding earthquakes is a challenging yet promising area of research that has gained increasing attention in recent years. This study introduces a novel reconstruction-based modeling approach enhanced by negative learning, employing a Bidirectional Long Short-Term Memory (BiLSTM) network explicitly trained to accurately reconstruct non-seismic geomagnetic signals while intentionally amplifying reconstruction errors for seismic signals. By penalizing the model for accurately reconstructing seismic anomalies, the negative learning approach effectively magnifies the differences between normal and anomalous data. This strategic differentiation enhances the sensitivity of the BiLSTM network, enabling improved detection of subtle geomagnetic More >

  • Open Access

    ARTICLE

    A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization

    Zhao Li1, Hongyu Xu1,*, Shuai Zhang2, Jintao Cui1, Xiaofeng Liu1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068763 - 10 November 2025

    Abstract The moving morphable component (MMC) topology optimization method, as a typical explicit topology optimization method, has been widely concerned. In the MMC topology optimization framework, the surrogate material model is mainly used for finite element analysis at present, and the effectiveness of the surrogate material model has been fully confirmed. However, there are some accuracy problems when dealing with boundary elements using the surrogate material model, which will affect the topology optimization results. In this study, a boundary element reconstruction (BER) model is proposed based on the surrogate material model under the MMC topology optimization… More >

  • Open Access

    ARTICLE

    Multi-Constraint Generative Adversarial Network-Driven Optimization Method for Super-Resolution Reconstruction of Remote Sensing Images

    Binghong Zhang, Jialing Zhou, Xinye Zhou, Jia Zhao, Jinchun Zhu, Guangpeng Fan*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068309 - 10 November 2025

    Abstract Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring, urban planning, and disaster assessment. However, traditional methods exhibit deficiencies in detail recovery and noise suppression, particularly when processing complex landscapes (e.g., forests, farmlands), leading to artifacts and spectral distortions that limit practical utility. To address this, we propose an enhanced Super-Resolution Generative Adversarial Network (SRGAN) framework featuring three key innovations: (1) Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing; (2) A multi-loss joint optimization strategy… More >

  • Open Access

    ARTICLE

    Encoder-Guided Latent Space Search Based on Generative Networks for Stereo Disparity Estimation in Surgical Imaging

    Guangyu Xu1,2, Siyuan Xu3, Siyu Lu4,*, Yuxin Liu1, Bo Yang1, Junmin Lyu5, Wenfeng Zheng1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4037-4053, 2025, DOI:10.32604/cmes.2025.074901 - 23 December 2025

    Abstract Robust stereo disparity estimation plays a critical role in minimally invasive surgery, where dynamic soft tissues, specular reflections, and data scarcity pose major challenges to traditional end-to-end deep learning and deformable model-based methods. In this paper, we propose a novel disparity estimation framework that leverages a pretrained StyleGAN generator to represent the disparity manifold of Minimally Invasive Surgery (MIS) scenes and reformulates the stereo matching task as a latent-space optimization problem. Specifically, given a stereo pair, we search for the optimal latent vector in the intermediate latent space of StyleGAN, such that the photometric reconstruction… More >

  • Open Access

    ARTICLE

    Mordukhovich Subdifferential Optimization Framework for Multi-Criteria Voice Cloning of Pathological Speech

    Rytis Maskeliūnas1, Robertas Damaševičius1,*, Audrius Kulikajevas1, Kipras Pribuišis2, Nora Ulozaitė-Stanienė2, Virgilijus Uloza2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4203-4223, 2025, DOI:10.32604/cmes.2025.072790 - 23 December 2025

    Abstract This study introduces a novel voice cloning framework driven by Mordukhovich Subdifferential Optimization (MSO) to address the complex multi-objective challenges of pathological speech synthesis in under-resourced Lithuanian language with unique phonemes not present in most pre-trained models. Unlike existing voice synthesis models that often optimize for a single objective or are restricted to major languages, our approach explicitly balances four competing criteria: speech naturalness, speaker similarity, computational efficiency, and adaptability to pathological voice patterns. We evaluate four model configurations combining Lithuanian and English encoders, synthesizers, and vocoders. The hybrid model (English encoder, Lithuanian synthesizer, English More >

  • Open Access

    ARTICLE

    An Efficient CSP-PDW Approach for ECG Signal Compression and Reconstruction for IoT-Based Healthcare

    Hari Mohan Rai1,#, Chandra Mukherjee2,#, Joon Yoo1, Hanaa A. Abdallah3, Saurabh Agarwal4,*, Wooguil Pak4,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5723-5745, 2025, DOI:10.32604/cmc.2025.070391 - 23 October 2025

    Abstract A hybrid Compressed Sensing and Primal-Dual Wavelet (CSP-PDW) technique is proposed for the compression and reconstruction of ECG signals. The compression and reconstruction algorithms are implemented using four key concepts: Sparsifying Basis, Restricted Isometry Principle, Gaussian Random Matrix, and Convex Minimization. In addition to the conventional compression sensing reconstruction approach, wavelet-based processing is employed to enhance reconstruction efficiency. A mathematical model of the proposed algorithm is derived analytically to obtain the essential parameters of compression sensing, including the sparsifying basis, measurement matrix size, and number of iterations required for reconstructing the original signal and determining More >

  • Open Access

    ARTICLE

    Adapting Convolutional Autoencoder for DDoS Attack Detection via Joint Reconstruction Learning and Refined Anomaly Scoring

    Seulki Han1, Sangho Son2, Won Sakong2, Haemin Jung3,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2893-2912, 2025, DOI:10.32604/cmc.2025.067211 - 23 September 2025

    Abstract As cyber threats become increasingly sophisticated, Distributed Denial-of-Service (DDoS) attacks continue to pose a serious threat to network infrastructure, often disrupting critical services through overwhelming traffic. Although unsupervised anomaly detection using convolutional autoencoders (CAEs) has gained attention for its ability to model normal network behavior without requiring labeled data, conventional CAEs struggle to effectively distinguish between normal and attack traffic due to over-generalized reconstructions and naive anomaly scoring. To address these limitations, we propose CA-CAE, a novel anomaly detection framework designed to improve DDoS detection through asymmetric joint reconstruction learning and refined anomaly scoring. Our… More >

  • Open Access

    ARTICLE

    Acceleration Response Reconstruction for Structural Health Monitoring Based on Fully Convolutional Networks

    Wenda Ma, Qizhi Tang*, Huang Lei, Longfei Chang, Chen Wang

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1265-1286, 2025, DOI:10.32604/sdhm.2025.065294 - 05 September 2025

    Abstract Lost acceleration response reconstruction is crucial for assessing structural conditions in structural health monitoring (SHM). However, traditional methods struggle to address the reconstruction of acceleration responses with complex features, resulting in a lower reconstruction accuracy. This paper addresses this challenge by leveraging the advanced feature extraction and learning capabilities of fully convolutional networks (FCN) to achieve precise reconstruction of acceleration responses. In the designed network architecture, the incorporation of skip connections preserves low-level details of the network, greatly facilitating the flow of information and improving training efficiency and accuracy. Dropout techniques are employed to reduce… More >

  • Open Access

    ARTICLE

    Adaptive Fusion Neural Networks for Sparse-Angle X-Ray 3D Reconstruction

    Shaoyong Hong1, Bo Yang2, Yan Chen2, Hao Quan3, Shan Liu4, Minyi Tang5,*, Jiawei Tian6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1091-1112, 2025, DOI:10.32604/cmes.2025.066165 - 31 July 2025

    Abstract 3D medical image reconstruction has significantly enhanced diagnostic accuracy, yet the reliance on densely sampled projection data remains a major limitation in clinical practice. Sparse-angle X-ray imaging, though safer and faster, poses challenges for accurate volumetric reconstruction due to limited spatial information. This study proposes a 3D reconstruction neural network based on adaptive weight fusion (AdapFusionNet) to achieve high-quality 3D medical image reconstruction from sparse-angle X-ray images. To address the issue of spatial inconsistency in multi-angle image reconstruction, an innovative adaptive fusion module was designed to score initial reconstruction results during the inference stage and… More >

Displaying 1-10 on page 1 of 153. Per Page