Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident

    Mengdong An1, Weiyuan Zhong1, Wei Xu2, Xiuli Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1331-1349, 2024, DOI:10.32604/fdmp.2023.046604 - 27 June 2024

    Abstract The reactor coolant pump (RCP) rotor seizure accident is defined as a short-time seizure of the RCP rotor. This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip. The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences. This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation, which need to be analyzed and understood. This study constructed transient flow and rotational speed mathematical More > Graphic Abstract

    Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident

  • Open Access

    ARTICLE

    Influence of the Impeller/Guide Vane Clearance Ratio on the Performances of a Nuclear Reactor Coolant Pump

    Xiaorui Cheng1,2,*, Xiang Liu1, Boru Lv1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.1, pp. 93-107, 2022, DOI:10.32604/fdmp.2022.017566 - 10 November 2021

    Abstract An AP1000 nuclear reactor coolant pump is considered to assess the influence of the Impeller/Guide vane clearance on the performances of this type of pumps. Experiments and numerical simulations relying on an unidirectional fluid-solid coupling approach are used to investigate the problem (stress, strain and mode of the rotor). The results reveal the relationship existing between the hydraulic performance of the nuclear reactor coolant pump and the clearance ratio. The effect of clearance ratio on the maximum equivalent stress on the back surface of the impeller blade is greater than that on the working surface More >

Displaying 1-10 on page 1 of 2. Per Page