Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    A Deep Learning Model for Insurance Claims Predictions

    Umar Isa Abdulkadir*, Anil Fernando*

    Journal on Artificial Intelligence, Vol.6, pp. 71-83, 2024, DOI:10.32604/jai.2024.045332 - 22 April 2024

    Abstract One of the significant issues the insurance industry faces is its ability to predict future claims related to individual policyholders. As risk varies from one policyholder to another, the industry has faced the challenge of using various risk factors to accurately predict the likelihood of claims by policyholders using historical data. Traditional machine-learning models that use neural networks are recognized as exceptional algorithms with predictive capabilities. This study aims to develop a deep learning model using sequential deep regression techniques for insurance claim prediction using historical data obtained from Kaggle with 1339 cases and eight… More >

  • Open Access

    ARTICLE

    Classification of Human Protein in Multiple Cells Microscopy Images Using CNN

    Lina Al-joudi, Muhammad Arif*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1763-1780, 2023, DOI:10.32604/cmc.2023.039413 - 30 August 2023

    Abstract The subcellular localization of human proteins is vital for understanding the structure of human cells. Proteins play a significant role within human cells, as many different groups of proteins are located in a specific location to perform a particular function. Understanding these functions will help in discovering many diseases and developing their treatments. The importance of imaging analysis techniques, specifically in proteomics research, is becoming more prevalent. Despite recent advances in deep learning techniques for analyzing microscopy images, classification models have faced critical challenges in achieving high performance. Most protein subcellular images have a significant… More >

  • Open Access

    ARTICLE

    Optimized Power Factor Correction for High Speed Switched Reluctance Motor

    R. S. Preethishri*, J. Anitha Roseline, K. Murugesan, M. Senthil Kumaran

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 997-1014, 2023, DOI:10.32604/iasc.2023.025510 - 06 June 2022

    Abstract The Power Factor Correction (PFC) in Switched Reluctance (SR) motor is discussed in this article. The SR motors are applicable for multiple applications like electric vehicles, wind mills, machineries etc. The doubly salient structure of SR motor causes the occurrence of torque ripples, which affects the power factor of the motor. To improve the power quality, the power factor has to be corrected and the ripples have to be minimized. In order to achieve these objectives, a novel power factor correction (PFC) method is proposed in this work. Here, the conventional Diode Bridge Rectifier (DBR)… More >

  • Open Access

    ARTICLE

    Innovative Fungal Disease Diagnosis System Using Convolutional Neural Network

    Tahir Alyas1,*, Khalid Alissa2, Abdul Salam Mohammad3, Shazia Asif4, Tauqeer Faiz5, Gulzar Ahmed6

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4869-4883, 2022, DOI:10.32604/cmc.2022.031376 - 28 July 2022

    Abstract Fungal disease affects more than a billion people worldwide, resulting in different types of fungus diseases facing life-threatening infections. The outer layer of your body is called the integumentary system. Your skin, hair, nails, and glands are all part of it. These organs and tissues serve as your first line of defence against bacteria while protecting you from harm and the sun. The It serves as a barrier between the outside world and the regulated environment inside our bodies and a regulating effect. Heat, light, damage, and illness are all protected by it. Fungi-caused infections… More >

  • Open Access

    ARTICLE

    B-PesNet: Smoothly Propagating Semantics for Robust and Reliable Multi-Scale Object Detection for Secure Systems

    Yunbo Rao1,2, Hongyu Mu1, Zeyu Yang1, Weibin Zheng1, Faxin Wang1, Jiansu Pu1, Shaoning Zeng2

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.3, pp. 1039-1054, 2022, DOI:10.32604/cmes.2022.020331 - 27 June 2022

    Abstract Multi-scale object detection is a research hotspot, and it has critical applications in many secure systems. Although the object detection algorithms have constantly been progressing recently, how to perform highly accurate and reliable multi-class object detection is still a challenging task due to the influence of many factors, such as the deformation and occlusion of the object in the actual scene. The more interference factors, the more complicated the semantic information, so we need a deeper network to extract deep information. However, deep neural networks often suffer from network degradation. To prevent the occurrence of… More >

  • Open Access

    ARTICLE

    An Optimized Convolutional Neural Network with Combination Blocks for Chinese Sign Language Identification

    Yalan Gao, Yanqiong Zhang, Xianwei Jiang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.1, pp. 95-117, 2022, DOI:10.32604/cmes.2022.019970 - 02 June 2022

    Abstract (Aim) Chinese sign language is an essential tool for hearing-impaired to live, learn and communicate in deaf communities. Moreover, Chinese sign language plays a significant role in speech therapy and rehabilitation. Chinese sign language identification can provide convenience for those hearing impaired people and eliminate the communication barrier between the deaf community and the rest of society. Similar to the research of many biomedical image processing (such as automatic chest radiograph processing, diagnosis of chest radiological images, etc.), with the rapid development of artificial intelligence, especially deep learning technologies and algorithms, sign language image recognition ushered… More >

  • Open Access

    ARTICLE

    Artificial Monitoring of Eccentric Synchronous Reluctance Motors Using Neural Networks

    Shuguang Wei, Jiaqi Li*, Zixu Zhao, Dong Yuan

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1035-1052, 2022, DOI:10.32604/cmc.2022.024201 - 24 February 2022

    Abstract This paper proposes an artificial neural network for monitoring and detecting the eccentric error of synchronous reluctance motors. Firstly, a 15 kW synchronous reluctance motor is introduced and took as a case study to investigate the effects of eccentric rotor. Then, the equivalent magnetic circuits of the studied motor are analyzed and developed, in cases of dynamic eccentric rotor and static eccentric rotor condition, respectively. After that, the analytical equations of the studied motor are derived, in terms of its air-gap flux density, electromagnetic torque, and electromagnetic force, followed by the electromagnetic finite element analyses. Then,… More >

  • Open Access

    ARTICLE

    PSO Based Torque Ripple Minimization Of Switched Reluctance Motor Using FPGA Controller

    A. Manjula1,*, L. Kalaivani2, M. Gengaraj2

    Intelligent Automation & Soft Computing, Vol.29, No.2, pp. 451-465, 2021, DOI:10.32604/iasc.2021.016088 - 16 June 2021

    Abstract The fast-growing field of mechanical robotization necessitates a well-designed and controlled version of electric drives. The concept of control concerning mechanical characteristics also requires a methodology in which the system needs to be modeled precisely and deals with uncertainty. The proposed method provides the enhanced performance of Switched Reluctance Motor (SRM) by controlling its speed and minimized torque ripple. Proportional-Integral-Derivative (PID) controllers have drawn more attention in industry automation due to their ease and robustness. The performances are further improved by using fractional order (Non-integer) controllers. The Modified Particle Swarm Optimization (MPSO) based optimization approach… More >

Displaying 1-10 on page 1 of 8. Per Page