Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    On the Features of Thermal Convection in a Compressible Gas

    Igor B. Palymskiy1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 957-974, 2024, DOI:10.32604/fdmp.2024.048829

    Abstract The fully nonlinear equations of gas dynamics are solved in the framework of a numerical approach in order to study the stability of the steady mode of Rayleigh-Bénard convection in compressible, viscous and heat-conducting gases encapsulated in containers with no-slip boundaries and isothermal top and bottom walls. An initial linear temperature profile is assumed. A map of the possible convective modes is presented assuming the height of the region and the value of the temperature gradient as influential parameters. For a relatively small height, isobaric convection is found to take place, which is taken over… More >

  • Open Access

    ARTICLE

    Lattice Boltzmann Simulation of Magnetic Field Effect on Electrically Conducting Fluid at Inclined Angles in Rayleigh-Bénard Convection

    T. Ahmed1, S. Hassan1,2, M. F. Hasan3, M. M. Molla1,2,*, M. A. Taher4, S. C. Saha5

    Energy Engineering, Vol.118, No.1, pp. 15-36, 2021, DOI:10.32604/EE.2020.011237

    Abstract The magneto-hydrodynamics (MHD) effect is studied at different inclined angles in Rayleigh-Bénard (RB) convection inside a rectangular enclosure using the lattice Boltzmann method (LBM). The enclosure is filled with electrically conducting fluids of different characteristics. These characteristics are defined by Prandtl number, Pr. The considered Pr values for this study are 10 and 70. The influence of other dimensionless parameters Rayleigh numbers Ra = 103; 104; 105; 106 and Hartmann numbers Ha = 0, 10, 25, 50, 100, on fluid flow and heat transfer, are also investigated considering different inclined angles φ of magnetic field by analyzing computed local Nusselt numbers… More >

  • Open Access

    ARTICLE

    Hybrid LES/URANS Simulation of Rayleigh-Bénard Convection Using BEM

    Primož Kocutar1, *, Jure Ravnik1, Leopold Škerget1

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.1, pp. 1-22, 2020, DOI:10.32604/cmes.2020.08728

    Abstract In this paper, we develop and test a unified hybrid LES/URANS turbulence model with two different Large Eddy Simulation (LES) turbulence models. The numerical algorithm is based on the Boundary Element Method. In the existing hybrid LES/URANS turbulence model we implemented a new Smagorinsky LES turbulence model. The hybrid LES/URANS turbulence model is unified, which means that the LES/URANS interface is changed dynamically during simulation using a physical quantity. In order to define the interface between LES and unsteady Reynolds Averaged Navier Stokes (URANS) zones during the simulation, we use the Reynolds number based on… More >

  • Open Access

    ARTICLE

    The Chebyshev Tau Spectral Method for the Solution of the Linear Stability Equations for Rayleigh-Bénard Convection with Melting

    Rubén Avila1, Eduardo Ramos2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.51, No.1, pp. 73-92, 2009, DOI:10.3970/cmes.2009.051.073

    Abstract A Chebyshev Tau numerical algorithm is presented to solve the perturbation equations that result from the linear stability analysis of the convective motion of a fluid layer that appears when an unconfined solid melts in the presence of gravity. The system of equations that describe the phenomenon constitute an eigenvalue problem whose accurate solution requires a robust method. We solve the equations with our method and briefly describe examples of the results. In the limit where the liquid-solid interface recedes at zero velocity the Rayleigh-Bénard solution is recovered. We show that the critical Rayleigh number Rac More >

Displaying 1-10 on page 1 of 4. Per Page