Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (143)
  • Open Access

    ARTICLE

    Prediction of Alzheimer’s Using Random Forest with Radiomic Features

    Anuj Singh*, Raman Kumar, Arvind Kumar Tiwari

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 513-530, 2023, DOI:10.32604/csse.2023.029608 - 16 August 2022

    Abstract Alzheimer’s disease is a non-reversible, non-curable, and progressive neurological disorder that induces the shrinkage and death of a specific neuronal population associated with memory formation and retention. It is a frequently occurring mental illness that occurs in about 60%–80% of cases of dementia. It is usually observed between people in the age group of 60 years and above. Depending upon the severity of symptoms the patients can be categorized in Cognitive Normal (CN), Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD). Alzheimer’s disease is the last phase of the disease where the brain is severely… More >

  • Open Access

    ARTICLE

    Predictive-Analysis-based Machine Learning Model for Fraud Detection with Boosting Classifiers

    M. Valavan, S. Rita*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 231-245, 2023, DOI:10.32604/csse.2023.026508 - 16 August 2022

    Abstract Fraud detection for credit/debit card, loan defaulters and similar types is achievable with the assistance of Machine Learning (ML) algorithms as they are well capable of learning from previous fraud trends or historical data and spot them in current or future transactions. Fraudulent cases are scant in the comparison of non-fraudulent observations, almost in all the datasets. In such cases detecting fraudulent transaction are quite difficult. The most effective way to prevent loan default is to identify non-performing loans as soon as possible. Machine learning algorithms are coming into sight as adept at handling such More >

  • Open Access

    ARTICLE

    Prediction Model for a Good Learning Environment Using an Ensemble Approach

    S. Subha1,*, S. Baghavathi Priya2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2081-2093, 2023, DOI:10.32604/csse.2023.028451 - 01 August 2022

    Abstract This paper presents an efficient prediction model for a good learning environment using Random Forest (RF) classifier. It consists of a series of modules; data preprocessing, data normalization, data split and finally classification or prediction by the RF classifier. The preprocessed data is normalized using min-max normalization often used before model fitting. As the input data or variables are measured at different scales, it is necessary to normalize them to contribute equally to the model fitting. Then, the RF classifier is employed for course selection which is an ensemble learning method and k-fold cross-validation (k = 10) is… More >

  • Open Access

    ARTICLE

    DLMNN Based Heart Disease Prediction with PD-SS Optimization Algorithm

    S. Raghavendra1, Vasudev Parvati2, R. Manjula3, Ashok Kumar Nanda4, Ruby Singh5, D. Lakshmi6, S. Velmurugan7,*

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1353-1368, 2023, DOI:10.32604/iasc.2023.027977 - 19 July 2022

    Abstract In contemporary medicine, cardiovascular disease is a major public health concern. Cardiovascular diseases are one of the leading causes of death worldwide. They are classified as vascular, ischemic, or hypertensive. Clinical information contained in patients’ Electronic Health Records (EHR) enables clinicians to identify and monitor heart illness. Heart failure rates have risen dramatically in recent years as a result of changes in modern lifestyles. Heart diseases are becoming more prevalent in today’s medical setting. Each year, a substantial number of people die as a result of cardiac pain. The primary cause of these deaths is… More >

  • Open Access

    ARTICLE

    An Intrusion Detection System for SDN Using Machine Learning

    G. Logeswari*, S. Bose, T. Anitha

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 867-880, 2023, DOI:10.32604/iasc.2023.026769 - 06 June 2022

    Abstract Software Defined Networking (SDN) has emerged as a promising and exciting option for the future growth of the internet. SDN has increased the flexibility and transparency of the managed, centralized, and controlled network. On the other hand, these advantages create a more vulnerable environment with substantial risks, culminating in network difficulties, system paralysis, online banking frauds, and robberies. These issues have a significant detrimental impact on organizations, enterprises, and even economies. Accuracy, high performance, and real-time systems are necessary to achieve this goal. Using a SDN to extend intelligent machine learning methodologies in an Intrusion… More >

  • Open Access

    ARTICLE

    Machine Learning and Artificial Neural Network for Predicting Heart Failure Risk

    Polin Rahman1, Ahmed Rifat1, MD. IftehadAmjad Chy1, Mohammad Monirujjaman Khan1,*, Mehedi Masud2, Sultan Aljahdali2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 757-775, 2023, DOI:10.32604/csse.2023.021469 - 01 June 2022

    Abstract Heart failure is now widely spread throughout the world. Heart disease affects approximately 48% of the population. It is too expensive and also difficult to cure the disease. This research paper represents machine learning models to predict heart failure. The fundamental concept is to compare the correctness of various Machine Learning (ML) algorithms and boost algorithms to improve models’ accuracy for prediction. Some supervised algorithms like K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), Logistic Regression (LR) are considered to achieve the best results. Some boosting algorithms like Extreme Gradient… More >

  • Open Access

    ARTICLE

    Research on Early Warning of Customer Churn Based on Random Forest

    Zizhen Qin, Yuxin Liu, Tianze Zhang*

    Journal on Artificial Intelligence, Vol.4, No.3, pp. 143-154, 2022, DOI:10.32604/jai.2022.031843 - 01 December 2022

    Abstract With the rapid development of interest rate market and big data, the banking industry has shown the obvious phenomenon of “two or eight law”, 20% of the high quality customers occupy most of the bank’s assets, how to prevent the loss of bank credit card customers has become a growing concern for banks. Therefore, it is particularly important to establish a customer churn early warning model. In this paper, we will use the random forest method to establish a customer churn early warning model, focusing on the churn of bank credit card customers and predicting… More >

  • Open Access

    ARTICLE

    Human Emotions Classification Using EEG via Audiovisual Stimuli and AI

    Abdullah A Asiri1, Akhtar Badshah2, Fazal Muhammad3,*, Hassan A Alshamrani1, Khalil Ullah4, Khalaf A Alshamrani1, Samar Alqhtani5, Muhammad Irfan6, Hanan Talal Halawani7, Khlood M Mehdar8

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5075-5089, 2022, DOI:10.32604/cmc.2022.031156 - 28 July 2022

    Abstract Electroencephalogram (EEG) is a medical imaging technology that can measure the electrical activity of the scalp produced by the brain, measured and recorded chronologically the surface of the scalp from the brain. The recorded signals from the brain are rich with useful information. The inference of this useful information is a challenging task. This paper aims to process the EEG signals for the recognition of human emotions specifically happiness, anger, fear, sadness, and surprise in response to audiovisual stimuli. The EEG signals are recorded by placing neurosky mindwave headset on the subject’s scalp, in response… More >

  • Open Access

    ARTICLE

    An ISSA-RF Algorithm for Prediction Model of Drug Compound Molecules Antagonizing ERα Gene Activity

    Minxi Rong1, Yong Li1,*, Xiaoli Guo1,*, Tao Zong2, Zhiyuan Ma2, Penglei Li2

    Oncologie, Vol.24, No.2, pp. 309-327, 2022, DOI:10.32604/oncologie.2022.021256 - 29 June 2022

    Abstract Objectives: The ERα biological activity prediction model is constructed by the compound molecular data of the anti-breast cancer therapeutic target ERα and its biological activity data, which improves the screening efficiency of anti-breast cancer drug candidates and saves the time and cost of drug development. Methods: In this paper, Ridge model is used to screen out molecular descriptors with a high degree of influence on the biological activity of Erα and divide datasets with different numbers of the molecular descriptors by screening results. Random Forest (RF) is trained by Root Mean Square Error (RMSE) and Coefficient of… More >

  • Open Access

    ARTICLE

    Water Quality Index Using Modified Random Forest Technique: Assessing Novel Input Features

    Wen Yee Wong1, Ayman Khallel Ibrahim Al-Ani1, Khairunnisa Hasikin1,*, Anis Salwa Mohd Khairuddin2, Sarah Abdul Razak3, Hanee Farzana Hizaddin4, Mohd Istajib Mokhtar5, Muhammad Mokhzaini Azizan6

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.3, pp. 1011-1038, 2022, DOI:10.32604/cmes.2022.019244 - 27 June 2022

    Abstract Water quality analysis is essential to understand the ecological status of aquatic life. Conventional water quality index (WQI) assessment methods are limited to features such as water acidic or basicity (pH), dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), and suspended solids (SS). These features are often insufficient to represent the water quality of a heavy metal–polluted river. Therefore, this paper aims to explore and analyze novel input features in order to formulate an improved WQI. In this work, prospective insights on the feasibility of alternative water quality input variables… More >

Displaying 81-90 on page 9 of 143. Per Page