Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (853)
  • Open Access

    REVIEW

    Mental Health and Well-Being of Doctoral Students: A Systematic Review

    Yuxin Guo1,2, Xinqiao Liu3,*

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.074063 - 28 January 2026

    Abstract Background: Mental health concerns among doctoral students have become increasingly prominent, with consistently low levels of well-being making this issue a critical focus in higher education research. This study aims to synthesize existing evidence on the mental health and well-being of doctoral students and to identify key factors and intervention strategies reported in the literature. Methods: A systematic review was conducted to examine the determinants and interventions related to doctoral students’ mental health and well-being. Relevant studies were comprehensively searched in Web of Science, PubMed, Scopus, and EBSCO, with the final search conducted on September 19,… More >

  • Open Access

    ARTICLE

    Computational Analysis of Thermal Buckling in Doubly-Curved Shells Reinforced with Origami-Inspired Auxetic Graphene Metamaterials

    Ehsan Arshid*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074898 - 29 January 2026

    Abstract In this work, a computational modelling and analysis framework is developed to investigate the thermal buckling behavior of doubly-curved composite shells reinforced with graphene-origami (G-Ori) auxetic metamaterials. A semi-analytical formulation based on the First-Order Shear Deformation Theory (FSDT) and the principle of virtual displacements is established, and closed-form solutions are derived via Navier’s method for simply supported boundary conditions. The G-Ori metamaterial reinforcements are treated as programmable constructs whose effective thermo-mechanical properties are obtained via micromechanical homogenization and incorporated into the shell model. A comprehensive parametric study examines the influence of folding geometry, dispersion arrangement, More >

  • Open Access

    REVIEW

    Grey Wolf Optimizer for Cluster-Based Routing in Wireless Sensor Networks: A Methodological Survey

    Mohammad Shokouhifar1,*, Fakhrosadat Fanian2, Mehdi Hosseinzadeh3,4,*, Aseel Smerat5,6, Kamal M. Othman7, Abdulfattah Noorwali7, Esam Y. O. Zafar7

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.073789 - 29 January 2026

    Abstract Wireless Sensor Networks (WSNs) have become foundational in numerous real-world applications, ranging from environmental monitoring and industrial automation to healthcare systems and smart city development. As these networks continue to grow in scale and complexity, the need for energy-efficient, scalable, and robust communication protocols becomes more critical than ever. Metaheuristic algorithms have shown significant promise in addressing these challenges, offering flexible and effective solutions for optimizing WSN performance. Among them, the Grey Wolf Optimizer (GWO) algorithm has attracted growing attention due to its simplicity, fast convergence, and strong global search capabilities. Accordingly, this survey provides… More >

  • Open Access

    ARTICLE

    Harvesting Wave Energy: An Economic and Technological Assessment of the Coastal Areas in Sarawak

    Dexiecia Anak Francis1, Jalal Tavalaei1, Hadi Nabipour Afrouzi2,*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070501 - 27 January 2026

    Abstract Wave energy is a promising form of marine renewable energy that offers a sustainable pathway for electricity generation in coastal regions. Despite Malaysia’s extensive coastline, the exploration of wave energy in Sarawak remains limited due to economic, technical, and environmental challenges that hinder its implementation. Compared to other renewable energy sources, wave energy is underutilized largely because of cost uncertainties and the lack of local performance data. This research aims to identify the most suitable coastal zone in Sarawak that achieves an optimal balance between energy potential, cost-effectiveness, and environmental impact, particularly in relation to… More >

  • Open Access

    REVIEW

    A Survey of Federated Learning: Advances in Architecture, Synchronization, and Security Threats

    Faisal Mahmud1, Fahim Mahmud2, Rashedur M. Rahman1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073519 - 12 January 2026

    Abstract Federated Learning (FL) has become a leading decentralized solution that enables multiple clients to train a model in a collaborative environment without directly sharing raw data, making it suitable for privacy-sensitive applications such as healthcare, finance, and smart systems. As the field continues to evolve, the research field has become more complex and scattered, covering different system designs, training methods, and privacy techniques. This survey is organized around the three core challenges: how the data is distributed, how models are synchronized, and how to defend against attacks. It provides a structured and up-to-date review of… More >

  • Open Access

    REVIEW

    A Comprehensive Survey on Blockchain-Enabled Techniques and Federated Learning for Secure 5G/6G Networks: Challenges, Opportunities, and Future Directions

    Muhammad Asim1,*, Abdelhamied A. Ateya1, Mudasir Ahmad Wani1,2, Gauhar Ali1, Mohammed ElAffendi1, Ahmed A. Abd El-Latif1, Reshma Siyal3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070684 - 12 January 2026

    Abstract The growing developments in 5G and 6G wireless communications have revolutionized communications technologies, providing faster speeds with reduced latency and improved connectivity to users. However, it raises significant security challenges, including impersonation threats, data manipulation, distributed denial of service (DDoS) attacks, and privacy breaches. Traditional security measures are inadequate due to the decentralized and dynamic nature of next-generation networks. This survey provides a comprehensive review of how Federated Learning (FL), Blockchain, and Digital Twin (DT) technologies can collectively enhance the security of 5G and 6G systems. Blockchain offers decentralized, immutable, and transparent mechanisms for securing More >

  • Open Access

    ARTICLE

    Thin-Layer Convective Solar Drying and Mathematical Modelling of the Drying Kinetics of Marrubium vulgare Leaves

    Mohammed Benamara1,2, Boumediene Touati3, Said Bennaceur4, Bendjillali Ridha Ilyas5,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.072641 - 27 December 2025

    Abstract This study explores the thin-layer convective solar drying of Marrubium vulgare L. leaves under conditions typical of sun-rich semi-arid climates. Drying experiments were conducted at three inlet-air temperatures (40°C, 50°C, 60°C) and two air velocities (1.5 and 2.5 m·s−1) using an indirect solar dryer with auxiliary temperature control. Moisture-ratio data were fitted with eight widely used thin-layer models and evaluated using correlation coefficient (r), root-mean-square error (RMSE), and Akaike information criterion (AIC). A complementary heat-transfer analysis based on Reynolds and Prandtl numbers with appropriate Nusselt correlations was used to relate flow regime to drying performance, and an… More > Graphic Abstract

    Thin-Layer Convective Solar Drying and Mathematical Modelling of the Drying Kinetics of <i>Marrubium vulgare</i> Leaves

  • Open Access

    REVIEW

    From Identification to Obfuscation: A Survey of Cross-Network Mapping and Anti-Mapping Methods

    Shaojie Min1, Yaxiao Luo1, Kebing Liu1, Qingyuan Gong2, Yang Chen1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.073175 - 09 December 2025

    Abstract User identity linkage (UIL) across online social networks seeks to match accounts belonging to the same real-world individual. This cross-platform mapping enables accurate user modeling but also raises serious privacy risks. Over the past decade, the research community has developed a wide range of UIL methods, from structural embeddings to multimodal fusion architectures. However, corresponding adversarial and defensive approaches remain fragmented and comparatively understudied. In this survey, we provide a unified overview of both mapping and anti-mapping methods for UIL. We categorize representative mapping models by learning paradigm and data modality, and systematically compare them… More >

  • Open Access

    REVIEW

    Deep Learning-Enhanced Human Sensing with Channel State Information: A Survey

    Binglei Yue, Aili Jiang, Chun Yang, Junwei Lei, Heng Liu, Yin Zhang*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-28, 2026, DOI:10.32604/cmc.2025.071047 - 10 November 2025

    Abstract With the growing advancement of wireless communication technologies, WiFi-based human sensing has gained increasing attention as a non-intrusive and device-free solution. Among the available signal types, Channel State Information (CSI) offers fine-grained temporal, frequency, and spatial insights into multipath propagation, making it a crucial data source for human-centric sensing. Recently, the integration of deep learning has significantly improved the robustness and automation of feature extraction from CSI in complex environments. This paper provides a comprehensive review of deep learning-enhanced human sensing based on CSI. We first outline mainstream CSI acquisition tools and their hardware specifications, More >

  • Open Access

    ARTICLE

    EGOP: A Server-Side Enhanced Architecture to Eliminate End-to-End Latency Caused by GOP Length in Live Streaming

    Kunpeng Zhou1, Tao Wu1,*, Jia Zhang2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-27, 2026, DOI:10.32604/cmc.2025.068160 - 10 November 2025

    Abstract Over the past few years, video live streaming has gained immense popularity as a leading internet application. In current solutions offered by cloud service providers, the Group of Pictures (GOP) length of the video source often significantly impacts end-to-end (E2E) latency. However, designing an optimized GOP structure to reduce this effect remains a significant challenge. This paper presents two key contributions. First, it explores how the GOP length at the video source influences E2E latency in mainstream cloud streaming services. Experimental results reveal that the mean E2E latency increases linearly with longer GOP lengths. Second, More >

Displaying 1-10 on page 1 of 853. Per Page