Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (264)
  • Open Access

    REVIEW

    A Review of Generative Adversarial Networks for Intrusion Detection Systems: Advances, Challenges, and Future Directions

    Monirah Al-Ajlan*, Mourad Ykhlef

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2053-2076, 2024, DOI:10.32604/cmc.2024.055891 - 18 November 2024

    Abstract The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems (IDSs). IDSs have become a research hotspot and have seen remarkable performance improvements. Generative adversarial networks (GANs) have also garnered increasing research interest recently due to their remarkable ability to generate data. This paper investigates the application of (GANs) in (IDS) and explores their current use within this research field. We delve into the adoption of GANs within signature-based, anomaly-based, and hybrid IDSs, focusing on their objectives, methodologies, and advantages. Overall, GANs have been widely employed, mainly focused on solving the More >

  • Open Access

    ARTICLE

    Data-Driven Structural Topology Optimization Method Using Conditional Wasserstein Generative Adversarial Networks with Gradient Penalty

    Qingrong Zeng, Xiaochen Liu, Xuefeng Zhu*, Xiangkui Zhang, Ping Hu

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2065-2085, 2024, DOI:10.32604/cmes.2024.052620 - 31 October 2024

    Abstract Traditional topology optimization methods often suffer from the “dimension curse” problem, wherein the computation time increases exponentially with the degrees of freedom in the background grid. Overcoming this challenge, we introduce a real-time topology optimization approach leveraging Conditional Generative Adversarial Networks with Gradient Penalty (CGAN-GP). This innovative method allows for nearly instantaneous prediction of optimized structures. Given a specific boundary condition, the network can produce a unique optimized structure in a one-to-one manner. The process begins by establishing a dataset using simulation data generated through the Solid Isotropic Material with Penalization (SIMP) method. Subsequently, we More >

  • Open Access

    ARTICLE

    Robot Vision over CosGANs to Enhance Performance with Source-Free Domain Adaptation Using Advanced Loss Function

    Laviza Falak Naz1, Rohail Qamar2,*, Raheela Asif1, Muhammad Imran2, Saad Ahmed3

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 855-887, 2024, DOI:10.32604/iasc.2024.055074 - 31 October 2024

    Abstract Domain shift is when the data used in training does not match the ones it will be applied to later on under similar conditions. Domain shift will reduce accuracy in results. To prevent this, domain adaptation is done, which adapts the pre-trained model to the target domain. In real scenarios, the availability of labels for target data is rare thus resulting in unsupervised domain adaptation. Herein, we propose an innovative approach where source-free domain adaptation models and Generative Adversarial Networks (GANs) are integrated to improve the performance of computer vision or robotic vision-based systems in… More >

  • Open Access

    ARTICLE

    TGAIN: Geospatial Data Recovery Algorithm Based on GAIN-LSTM

    Lechan Yang1,*, Li Li2, Shouming Ma3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1471-1489, 2024, DOI:10.32604/cmc.2024.056379 - 15 October 2024

    Abstract Accurate geospatial data are essential for geographic information systems (GIS), environmental monitoring, and urban planning. The deep integration of the open Internet and geographic information technology has led to increasing challenges in the integrity and security of spatial data. In this paper, we consider abnormal spatial data as missing data and focus on abnormal spatial data recovery. Existing geospatial data recovery methods require complete datasets for training, resulting in time-consuming data recovery and lack of generalization. To address these issues, we propose a GAIN-LSTM-based geospatial data recovery method (TGAIN), which consists of two main works:… More >

  • Open Access

    ARTICLE

    Research on Maneuver Decision-Making of Multi-Agent Adversarial Game in a Random Interference Environment

    Shiguang Hu1,2, Le Ru1,2,*, Bo Lu1,2, Zhenhua Wang3, Xiaolin Zhao1,2, Wenfei Wang1,2, Hailong Xi1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1879-1903, 2024, DOI:10.32604/cmc.2024.056110 - 15 October 2024

    Abstract The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances. This paper investigates the issue of strategy interaction and behavioral decision-making among game players in simulated confrontation scenarios within a random interference environment. It considers the possible risks that random disturbances may pose to the autonomous decision-making of game players, as well as the impact of participants’ manipulative behaviors on the state changes of the players. A nonlinear mathematical model is established to describe the strategy decision-making process of the participants in this scenario. Subsequently, the… More >

  • Open Access

    ARTICLE

    Adversarial Defense Technology for Small Infrared Targets

    Tongan Yu1, Yali Xue1,*, Yiming He1, Shan Cui2, Jun Hong2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1235-1250, 2024, DOI:10.32604/cmc.2024.056075 - 15 October 2024

    Abstract With the rapid development of deep learning-based detection algorithms, deep learning is widely used in the field of infrared small target detection. However, well-designed adversarial samples can fool human visual perception, directly causing a serious decline in the detection quality of the recognition model. In this paper, an adversarial defense technology for small infrared targets is proposed to improve model robustness. The adversarial samples with strong migration can not only improve the generalization of defense technology, but also save the training cost. Therefore, this study adopts the concept of maximizing multidimensional feature distortion, applying noise… More >

  • Open Access

    ARTICLE

    Stroke Electroencephalogram Data Synthesizing through Progressive Efficient Self-Attention Generative Adversarial Network

    Suzhe Wang*, Xueying Zhang, Fenglian Li, Zelin Wu

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1177-1196, 2024, DOI:10.32604/cmc.2024.056016 - 15 October 2024

    Abstract Early and timely diagnosis of stroke is critical for effective treatment, and the electroencephalogram (EEG) offers a low-cost, non-invasive solution. However, the shortage of high-quality patient EEG data often hampers the accuracy of diagnostic classification methods based on deep learning. To address this issue, our study designed a deep data amplification model named Progressive Conditional Generative Adversarial Network with Efficient Approximating Self Attention (PCGAN-EASA), which incrementally improves the quality of generated EEG features. This network can yield full-scale, fine-grained EEG features from the low-scale, coarse ones. Specially, to overcome the limitations of traditional generative models… More >

  • Open Access

    ARTICLE

    Network Traffic Synthesis and Simulation Framework for Cybersecurity Exercise Systems

    Dong-Wook Kim1, Gun-Yoon Sin2, Kwangsoo Kim3, Jaesik Kang3, Sun-Young Im3, Myung-Mook Han1,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3637-3653, 2024, DOI:10.32604/cmc.2024.054108 - 12 September 2024

    Abstract In the rapidly evolving field of cybersecurity, the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical. Traditional methods often fall short in capturing the dynamic and complex nature of modern cyber threats. To address this gap, we propose a comprehensive framework designed to create authentic network environments tailored for cybersecurity exercise systems. Our framework leverages advanced simulation techniques to generate scenarios that mirror actual network conditions faced by professionals in the field. The cornerstone of our approach is the use of a conditional tabular generative adversarial network (CTGAN),… More >

  • Open Access

    ARTICLE

    Improving Transferable Targeted Adversarial Attack for Object Detection Using RCEN Framework and Logit Loss Optimization

    Zhiyi Ding, Lei Sun*, Xiuqing Mao, Leyu Dai, Ruiyang Ding

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4387-4412, 2024, DOI:10.32604/cmc.2024.052196 - 12 September 2024

    Abstract Object detection finds wide application in various sectors, including autonomous driving, industry, and healthcare. Recent studies have highlighted the vulnerability of object detection models built using deep neural networks when confronted with carefully crafted adversarial examples. This not only reveals their shortcomings in defending against malicious attacks but also raises widespread concerns about the security of existing systems. Most existing adversarial attack strategies focus primarily on image classification problems, failing to fully exploit the unique characteristics of object detection models, thus resulting in widespread deficiencies in their transferability. Furthermore, previous research has predominantly concentrated on… More >

  • Open Access

    ARTICLE

    Mathematical Named Entity Recognition Based on Adversarial Training and Self-Attention

    Qiuyu Lai1,2, Wang Kang3, Lei Yang1,2, Chun Yang1,2,*, Delin Zhang2,*

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 649-664, 2024, DOI:10.32604/iasc.2024.051724 - 06 September 2024

    Abstract Mathematical named entity recognition (MNER) is one of the fundamental tasks in the analysis of mathematical texts. To solve the existing problems of the current neural network that has local instability, fuzzy entity boundary, and long-distance dependence between entities in Chinese mathematical entity recognition task, we propose a series of optimization processing methods and constructed an Adversarial Training and Bidirectional long short-term memory-Selfattention Conditional random field (AT-BSAC) model. In our model, the mathematical text was vectorized by the word embedding technique, and small perturbations were added to the word vector to generate adversarial samples, while More >

Displaying 1-10 on page 1 of 264. Per Page