Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,136)
  • Open Access

    ARTICLE

    Research on Grid-Connected Control Strategy of Distributed Generator Based on Improved Linear Active Disturbance Rejection Control

    Xin Mao*, Hongsheng Su, Jingxiu Li

    Energy Engineering, Vol.121, No.12, pp. 3929-3951, 2024, DOI:10.32604/ee.2024.057106 - 22 November 2024

    Abstract The virtual synchronous generator (VSG) technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources. However, the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response. In light of the issues above, a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control (ILADRC) is put forth for consideration. Firstly, an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop; then, the… More >

  • Open Access

    ARTICLE

    Maximum Power Point Tracking Based on Improved Kepler Optimization Algorithm and Optimized Perturb & Observe under Partial Shading Conditions

    Zhaoqiang Wang1, Fuyin Ni2,*

    Energy Engineering, Vol.121, No.12, pp. 3779-3799, 2024, DOI:10.32604/ee.2024.055535 - 22 November 2024

    Abstract Under the partial shading conditions (PSC) of Photovoltaic (PV) modules in a PV hybrid system, the power output curve exhibits multiple peaks. This often causes traditional maximum power point tracking (MPPT) methods to fall into local optima and fail to find the global optimum. To address this issue, a composite MPPT algorithm is proposed. It combines the improved kepler optimization algorithm (IKOA) with the optimized variable-step perturb and observe (OIP&O). The update probabilities, planetary velocity and position step coefficients of IKOA are nonlinearly and adaptively optimized. This adaptation meets the varying needs of the initial… More > Graphic Abstract

    Maximum Power Point Tracking Based on Improved Kepler Optimization Algorithm and Optimized Perturb & Observe under Partial Shading Conditions

  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    Improving Smart Home Security via MQTT: Maximizing Data Privacy and Device Authentication Using Elliptic Curve Cryptography

    Zainatul Yushaniza Mohamed Yusoff1, Mohamad Khairi Ishak2,*, Lukman A. B. Rahim3, Mohd Shahrimie Mohd Asaari1

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1669-1697, 2024, DOI:10.32604/csse.2024.056741 - 22 November 2024

    Abstract The rapid adoption of Internet of Things (IoT) technologies has introduced significant security challenges across the physical, network, and application layers, particularly with the widespread use of the Message Queue Telemetry Transport (MQTT) protocol, which, while efficient in bandwidth consumption, lacks inherent security features, making it vulnerable to various cyber threats. This research addresses these challenges by presenting a secure, lightweight communication proxy that enhances the scalability and security of MQTT-based Internet of Things (IoT) networks. The proposed solution builds upon the Dang-Scheme, a mutual authentication protocol designed explicitly for resource-constrained environments and enhances it… More >

  • Open Access

    ARTICLE

    Improving Badminton Action Recognition Using Spatio-Temporal Analysis and a Weighted Ensemble Learning Model

    Farida Asriani1,2, Azhari Azhari1,*, Wahyono Wahyono1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3079-3096, 2024, DOI:10.32604/cmc.2024.058193 - 18 November 2024

    Abstract Incredible progress has been made in human action recognition (HAR), significantly impacting computer vision applications in sports analytics. However, identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns. Deep learning techniques like convolutional neural networks (CNNs), long short-term memory (LSTM), and graph convolutional networks (GCNs) improve recognition in large datasets, while the traditional machine learning methods like SVM (support vector machines), RF (random forest), and LR (logistic regression), combined with handcrafted features and ensemble approaches, perform well but… More >

  • Open Access

    ARTICLE

    GL-YOLOv5: An Improved Lightweight Non-Dimensional Attention Algorithm Based on YOLOv5

    Yuefan Liu, Ducheng Zhang, Chen Guo*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3281-3299, 2024, DOI:10.32604/cmc.2024.057294 - 18 November 2024

    Abstract Craniocerebral injuries represent the primary cause of fatalities among riders involved in two-wheeler accidents; nevertheless, the prevalence of helmet usage among these riders remains alarmingly low. Consequently, the accurate identification of riders who are wearing safety helmets is of paramount importance. Current detection algorithms exhibit several limitations, including inadequate accuracy, substantial model size, and suboptimal performance in complex environments with small targets. To address these challenges, we propose a novel lightweight detection algorithm, termed GL-YOLOv5, which is an enhancement of the You Only Look Once version 5 (YOLOv5) framework. This model incorporates a Global DualPooling… More >

  • Open Access

    ARTICLE

    An Improved Distraction Behavior Detection Algorithm Based on YOLOv5

    Keke Zhou, Guoqiang Zheng*, Huihui Zhai, Xiangshuai Lv, Weizhen Zhang

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2571-2585, 2024, DOI:10.32604/cmc.2024.056863 - 18 November 2024

    Abstract Distracted driving remains a primary factor in traffic accidents and poses a significant obstacle to advancing driver assistance technologies. Improving the accuracy of distracted driving can greatly reduce the occurrence of traffic accidents, thereby providing a guarantee for the safety of drivers. However, detecting distracted driving behaviors remains challenging in real-world scenarios with complex backgrounds, varying target scales, and different resolutions. Addressing the low detection accuracy of existing vehicle distraction detection algorithms and considering practical application scenarios, this paper proposes an improved vehicle distraction detection algorithm based on YOLOv5. The algorithm integrates Attention-based Intra-scale Feature… More >

  • Open Access

    ARTICLE

    Improved IChOA-Based Reinforcement Learning for Secrecy Rate Optimization in Smart Grid Communications

    Mehrdad Shoeibi1, Mohammad Mehdi Sharifi Nevisi2, Sarvenaz Sadat Khatami3, Diego Martín2,*, Sepehr Soltani4, Sina Aghakhani5

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2819-2843, 2024, DOI:10.32604/cmc.2024.056823 - 18 November 2024

    Abstract In the evolving landscape of the smart grid (SG), the integration of non-organic multiple access (NOMA) technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management. However, the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages, especially when broadcasted from a neighborhood gateway (NG) to smart meters (SMs). This paper introduces a novel approach based on reinforcement learning (RL) to fortify the performance of secrecy. Motivated by the need for efficient and effective training of the fully connected layers in the RL… More >

  • Open Access

    ARTICLE

    Improved Double Deep Q Network Algorithm Based on Average Q-Value Estimation and Reward Redistribution for Robot Path Planning

    Yameng Yin1, Lieping Zhang2,*, Xiaoxu Shi1, Yilin Wang3, Jiansheng Peng4, Jianchu Zou4

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2769-2790, 2024, DOI:10.32604/cmc.2024.056791 - 18 November 2024

    Abstract By integrating deep neural networks with reinforcement learning, the Double Deep Q Network (DDQN) algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots. However, the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data. Targeting those problems, an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed. First, to enhance the precision of the target Q-value, the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value… More >

  • Open Access

    ARTICLE

    A Lightweight UAV Visual Obstacle Avoidance Algorithm Based on Improved YOLOv8

    Zongdong Du1,2, Xuefeng Feng3, Feng Li3, Qinglong Xian3, Zhenhong Jia1,2,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2607-2627, 2024, DOI:10.32604/cmc.2024.056616 - 18 November 2024

    Abstract The importance of unmanned aerial vehicle (UAV) obstacle avoidance algorithms lies in their ability to ensure flight safety and collision avoidance, thereby protecting people and property. We propose UAD-YOLOv8, a lightweight YOLOv8-based obstacle detection algorithm optimized for UAV obstacle avoidance. The algorithm enhances the detection capability for small and irregular obstacles by removing the P5 feature layer and introducing deformable convolution v2 (DCNv2) to optimize the cross stage partial bottleneck with 2 convolutions and fusion (C2f) module. Additionally, it reduces the model’s parameter count and computational load by constructing the unite ghost and depth-wise separable… More >

Displaying 1-10 on page 1 of 1136. Per Page