Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Advance IoT Intelligent Healthcare System for Lung Disease Classification Using Ensemble Techniques

    J. Prabakaran1,*, P. Selvaraj2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2141-2157, 2023, DOI:10.32604/csse.2023.034210 - 09 February 2023

    Abstract In healthcare systems, the Internet of Things (IoT) innovation and development approached new ways to evaluate patient data. A cloud-based platform tends to process data generated by IoT medical devices instead of high storage, and computational hardware. In this paper, an intelligent healthcare system has been proposed for the prediction and severity analysis of lung disease from chest computer tomography (CT) images of patients with pneumonia, Covid-19, tuberculosis (TB), and cancer. Firstly, the CT images are captured and transmitted to the fog node through IoT devices. In the fog node, the image gets modified into… More >

  • Open Access

    ARTICLE

    Mutation Prediction for Coronaviruses Using Genome Sequence and Recurrent Neural Networks

    Pranav Pushkar1, Christo Ananth2, Preeti Nagrath1, Jehad F. Al-Amri5, Vividha1, Anand Nayyar3,4,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1601-1619, 2022, DOI:10.32604/cmc.2022.026205 - 18 May 2022

    Abstract The study of viruses and their genetics has been an opportunity as well as a challenge for the scientific community. The recent ongoing SARS-Cov2 (Severe Acute Respiratory Syndrome) pandemic proved the unpreparedness for these situations. Not only the countermeasures for the effect caused by virus need to be tackled but the mutation taking place in the very genome of the virus is needed to be kept in check frequently. One major way to find out more information about such pathogens is by extracting the genetic data of such viruses. Though genetic data of viruses have… More >

  • Open Access

    ARTICLE

    Multi-Model CNN-RNN-LSTM Based Fruit Recognition and Classification

    Harmandeep Singh Gill1,*, Osamah Ibrahim Khalaf2, Youseef Alotaibi3, Saleh Alghamdi4, Fawaz Alassery5

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 637-650, 2022, DOI:10.32604/iasc.2022.022589 - 05 January 2022

    Abstract Contemporary vision and pattern recognition issues such as image, face, fingerprint identification, and recognition, DNA sequencing, often have a large number of properties and classes. To handle such types of complex problems, one type of feature descriptor is not enough. To overcome these issues, this paper proposed a multi-model recognition and classification strategy using multi-feature fusion approaches. One of the growing topics in computer and machine vision is fruit and vegetable identification and categorization. A fruit identification system may be employed to assist customers and purchasers in identifying the species and quality of fruit. Using More >

  • Open Access

    ARTICLE

    Applying Neural Networks for Tire Pressure Monitoring Systems

    Alex Kost1, Wael A. Altabey2,3,4, Mohammad Noori1,2,*, Taher Awad4

    Structural Durability & Health Monitoring, Vol.13, No.3, pp. 247-266, 2019, DOI:10.32604/sdhm.2019.07025

    Abstract A proof-of-concept indirect tire-pressure monitoring system is developed using artificial neural networks to identify the tire pressure of a vehicle tire. A quarter-car model was developed with MATLAB and Simulink to generate simulated accelerometer output data. Simulation data are used to train and evaluate a recurrent neural network with long short-term memory blocks (RNN-LSTM) and a convolutional neural network (CNN) developed in Python with Tensorflow. Bayesian Optimization via SigOpt was used to optimize training and model parameters. The predictive accuracy and training speed of the two models with various parameters are compared. Finally, future work More >

Displaying 1-10 on page 1 of 4. Per Page