Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Analysis of differentially expressed genes in Verruca vulgaris vs. adjacent normal skin by RNA-sequencing

    QINGQING GUO1,2, JIAYUE QI1,2, XIAOQIANG LIANG2, ZIGANG ZHAO2, JIA BAI2, FANG XIE2,#,*, CHENGXIN LI1,2,#,*

    BIOCELL, Vol.47, No.11, pp. 2435-2443, 2023, DOI:10.32604/biocell.2023.043126 - 27 November 2023

    Abstract Introduction: Verruca vulgaris is one of the most common low-risk HPV infections and is characterized by excessive proliferation of keratinocytes. Currently, very little genetic information is available regarding verruca vulgaris in the Chinese population. This study aimed to obtain comprehensive transcript information of verruca vulgaris by RNA sequencing. Methods: High-throughput sequencing was performed on three fresh verruca vulgaris samples and adjacent normal skin on the Illumina sequencing platform. The transcriptomes were analyzed using bioinformatics and the differentially expressed genes (DEGs) were verified by immunohistochemistry. Verruca vulgaris exhibited a unique molecular signature. Results: In total, 1,643 DEGs… More >

  • Open Access

    ARTICLE

    Intron Retention Fine-Tunes the Resistance of the Rice Mutant pls4 to Rice Sheath Blight (Rhizotonia solani AG I.1a)

    Shaochun Liu, Jiamin Hu, Haohua He, Junru Fu, Xu Jie, Dahu Zhou*, Haihui Fu*

    Phyton-International Journal of Experimental Botany, Vol.92, No.7, pp. 2035-2049, 2023, DOI:10.32604/phyton.2023.028296 - 29 May 2023

    Abstract OsPLS4 encodes a β-ketoacyl carrier protein reductase (KAR). The role of OsPLS4 in rice sheath blight (Rhizoctonia solani) remains unclear. Our preliminary studies showed that premature leaf senescence mutants (pls4) were highly susceptive to sheath blight in the early stage of rice development. To explore the role of this gene in the development of rice sheath blight, the transcriptome profiles of the rice pls4 mutant and wild type were compared by RNA-seq. The results revealed 2,569 differentially expressed genes (DEGs). The down-regulated genes were significantly enriched in the defense response-related biological processes. These down-regulated genes included the chitinase… More >

  • Open Access

    ARTICLE

    Transcriptome Analysis via RNA Sequencing Reveals the Molecular Mechanisms Underlying the Hedera helix Response to High Temperature

    Ting Zhang1,2, Ping Li3,*, Jiali Wei3,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.11, pp. 2403-2417, 2022, DOI:10.32604/phyton.2022.022421 - 12 July 2022

    Abstract Hedera helix is an evergreen ornamental plant that is resistant to cool but not high temperature and deserves to be further researched for improving its adaptability to heat stress. Two Hedera helix cultivars, heat-tolerant (HT) ‘Jessica’ and heat-sensitive (HS) ‘Shamrock’, were used for differences analyses of transcriptome. We detected 6179 differentially expressed genes (DEGs) and 5992 DEGs in ‘Jessica’ and ‘Shamrock’ to heat stress, respectively. Among these, 1983 upregulated DEGs and 1400 downregulated DEGs were shared between both varieties, resulting in enhancement of various pathways such as biosynthesis of secondary metabolites, glyoxylate dicarboxylate metabolism, and protein processing… More >

  • Open Access

    ARTICLE

    RNA-sequencing indicates high hemocyanin expression as a key strategy for cold adaptation in the Antarctic amphipod Eusirus cf. giganteus clade g3

    SAMUELE GRECO1,#, ELISA D’AGOSTINO2,#, CHIARA MANFRIN1, ANASTASIA SERENA GAETANO1, GAEL FURLANIS1, FRANCESCA CAPANNI1, GIANFRANCO SANTOVITO2, PAOLO EDOMI1, PIERO GIULIO GIULIANINI1, MARCO GERDOL1,*

    BIOCELL, Vol.45, No.6, pp. 1611-1619, 2021, DOI:10.32604/biocell.2021.016121 - 01 September 2021

    Abstract We here report the de novo transcriptome assembly and functional annotation of Eusirus cf. giganteus clade g3, providing the first database of expressed sequences from this giant Antarctic amphipod. RNA-sequencing, carried out on the whole body of a single juvenile individual likely undergoing molting, revealed the dominant expression of hemocyanins. The mRNAs encoding these oxygen-binding proteins cumulatively accounted for about 40% of the total transcriptional effort, highlighting the key biological importance of high hemocyanin production in this Antarctic amphipod species. We speculate that this observation may mirror a strategy previously described in Antarctic cephalopods, which compensates More >

  • Open Access

    ARTICLE

    Rapid Identification of a Candidate Gene Related to Fiber Strength Using a Superior Chromosome Segment Substitution Line from Gossypium hirsutum × Gossypium barbadense via Bulked Segregant RNA-Sequencing

    Qi Zhang1,#, Pengtao Li2,#, Aiying Liu1, Shaoqi Li1, Quanwei Lu2, Qun Ge1, Junwen Li1, Wankui Gong1, Xiaoying Deng1, Haihong Shang1,3, Yuzhen Shi1,*, Youlu Yuan1,3,*

    Phyton-International Journal of Experimental Botany, Vol.90, No.3, pp. 837-858, 2021, DOI:10.32604/phyton.2021.014437 - 30 March 2021

    Abstract Cotton is the most widely cultivated commercial crop producing natural fiber around the world. As a critical trait for fiber quality, fiber strength principally determined during the secondary wall thickening period. Based on the developed BC5F3:5 CSSLs (chromosome segment substitution lines) from Gossypium hirsutum CCRI36 × G. barbadense Hai 1, the superior MBI9915 was chosen to construct the secondary segregated population BC7F2 with its recurrent parent CCRI36, which was subsequently subjected to Bulk segregant RNA-sequencing (BSR-seq) for rapid identification of candidate genes related to fiber strength. A total of 4 fiber-transcriptome libraries were separately constructed and sequenced, including… More >

  • Open Access

    ARTICLE

    Expression profiling of immune cells in systemic lupus erythematosus by single-cell RNA sequencing

    XIANLIANG HOU1,2,3,#, DONGE TANG1,#, FENGPING ZHENG1,#, MINGLIN OU3, YONG XU1, HUIXUAN XU1, XIAOPING HONG4, XINZHOU ZHANG1, WEIER DAI5, DONGZHOU LIU4,*, YONG DAI1,*

    BIOCELL, Vol.44, No.4, pp. 559-582, 2020, DOI:10.32604/biocell.2020.011022 - 24 December 2020

    Abstract Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by abnormal cellular and humoral immune responses and excessive autoantibody production. The precise pathologic mechanism of SLE remains elusive. The advent of single-cell RNA sequencing (scRNA-seq) enables unbiased analysis of the molecular differences of cell populations at the single-cell level. We used scRNA-seq to profile the transcriptomes of peripheral blood mononuclear cells from an SLE patient compared with a healthy control (HC). A total of 16,021 cells were analyzed and partitioned into 12 distinct clusters. The marker genes of each cluster and the four major… More >

  • Open Access

    ABSTRACT

    Gene Expression Profiling of Human Hepatocytes Grown on Differing Substrate Stiffness

    Fan Feng1, Tingting Xia1, Runze Zhao1, Mengyue Wang1, Li Yang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 131-131, 2019, DOI:10.32604/mcb.2019.07211

    Abstract Objective: To study the effects of different substrate stiffness on human hepatocytes using RNA sequencing (RNA-Seq) technology. The stiffness was corresponding to physiology and pathology stiffness of liver tissues.
    Results: With the aid of RNA-Seq technology, our study characterizes the transcriptome of hepatocytes cultured on soft, moderate, stiff and plastic substrates. Compared to soft substrate, our RNA-Seq results revealed 1131 genes that were up-regulated and 2534 that were down-regulated on moderate substrate, 1370 genes that were up-regulated and 2677 down-regulated genes on stiff substrate. Functional enrichment analysis indicated that differentially expressed genes were associated with More >

  • Open Access

    ABSTRACT

    Identification of Lysyl Oxidase on Repression of Inflammation for Promoting Anterior Cruciate Ligament Remodeling

    Yan Gao1, Chunli Wang1, Li Yang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 93-93, 2019, DOI:10.32604/mcb.2019.07322

    Abstract At present, anterior cruciate ligament (ACL) damage repair is still a huge challenge. Our previous studies indicated that the Lysyl oxidase (LOX) were significantly reduced in injurious ACL fibroblasts, which is the major reason for its poor healing ability. The main purpose of our study was to detected the potential of LOX to act as an anabolic agent in injured ACL. The effect of LOX on the ACL at a concentration of 20ng/mL was investigated. The molecular mechanisms and signaling pathway were elucidated by RNA-sequencing, q-PCR and western blotting. For the in vivo study, the… More >

Displaying 1-10 on page 1 of 8. Per Page