Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Underwater Waste Recognition and Localization Based on Improved YOLOv5

    Jinxing Niu1,*, Shaokui Gu1, Junmin Du2, Yongxing Hao1

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2015-2031, 2023, DOI:10.32604/cmc.2023.040489 - 30 August 2023

    Abstract With the continuous development of the economy and society, plastic pollution in rivers, lakes, oceans, and other bodies of water is increasingly severe, posing a serious challenge to underwater ecosystems. Effective cleaning up of underwater litter by robots relies on accurately identifying and locating the plastic waste. However, it often causes significant challenges such as noise interference, low contrast, and blurred textures in underwater optical images. A weighted fusion-based algorithm for enhancing the quality of underwater images is proposed, which combines weighted logarithmic transformations, adaptive gamma correction, improved multi-scale Retinex (MSR) algorithm, and the contrast… More >

  • Open Access

    ARTICLE

    An Improved High Precision 3D Semantic Mapping of Indoor Scenes from RGB-D Images

    Jing Xin1,*, Kenan Du1, Jiale Feng1, Mao Shan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2621-2640, 2023, DOI:10.32604/cmes.2023.027467 - 03 August 2023

    Abstract This paper proposes an improved high-precision 3D semantic mapping method for indoor scenes using RGB-D images. The current semantic mapping algorithms suffer from low semantic annotation accuracy and insufficient real-time performance. To address these issues, we first adopt the Elastic Fusion algorithm to select key frames from indoor environment image sequences captured by the Kinect sensor and construct the indoor environment space model. Then, an indoor RGB-D image semantic segmentation network is proposed, which uses multi-scale feature fusion to quickly and accurately obtain object labeling information at the pixel level of the spatial point cloud More >

  • Open Access

    REVIEW

    Deep Learning-Based 3D Instance and Semantic Segmentation: A Review

    Siddiqui Muhammad Yasir1, Hyunsik Ahn2,*

    Journal on Artificial Intelligence, Vol.4, No.2, pp. 99-114, 2022, DOI:10.32604/jai.2022.031235 - 18 July 2022

    Abstract The process of segmenting point cloud data into several homogeneous areas with points in the same region having the same attributes is known as 3D segmentation. Segmentation is challenging with point cloud data due to substantial redundancy, fluctuating sample density and lack of apparent organization. The research area has a wide range of robotics applications, including intelligent vehicles, autonomous mapping and navigation. A number of researchers have introduced various methodologies and algorithms. Deep learning has been successfully used to a spectrum of 2D vision domains as a prevailing A.I. methods. However, due to the specific… More >

  • Open Access

    ARTICLE

    3D Instance Segmentation Using Deep Learning on RGB-D Indoor Data

    Siddiqui Muhammad Yasir1, Amin Muhammad Sadiq2, Hyunsik Ahn3,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5777-5791, 2022, DOI:10.32604/cmc.2022.025909 - 21 April 2022

    Abstract 3D object recognition is a challenging task for intelligent and robot systems in industrial and home indoor environments. It is critical for such systems to recognize and segment the 3D object instances that they encounter on a frequent basis. The computer vision, graphics, and machine learning fields have all given it a lot of attention. Traditionally, 3D segmentation was done with hand-crafted features and designed approaches that didn’t achieve acceptable performance and couldn’t be generalized to large-scale data. Deep learning approaches have lately become the preferred method for 3D segmentation challenges by their great success… More >

  • Open Access

    ARTICLE

    Visual Saliency Prediction Using Attention-based Cross-modal Integration Network in RGB-D Images

    Xinyue Zhang1, Ting Jin1,*, Mingjie Han1, Jingsheng Lei2, Zhichao Cao3

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 439-452, 2021, DOI:10.32604/iasc.2021.018643 - 11 August 2021

    Abstract Saliency prediction has recently gained a large number of attention for the sake of the rapid development of deep neural networks in computer vision tasks. However, there are still dilemmas that need to be addressed. In this paper, we design a visual saliency prediction model using attention-based cross-model integration strategies in RGB-D images. Unlike other symmetric feature extraction networks, we exploit asymmetric networks to effectively extract depth features as the complementary information of RGB information. Then we propose attention modules to integrate cross-modal feature information and emphasize the feature representation of salient regions, meanwhile neglect… More >

  • Open Access

    ARTICLE

    Real-Time Recognition and Location of Indoor Objects

    Jinxing Niu1,*, Qingsheng Hu1, Yi Niu1, Tao Zhang1, Sunil Kumar Jha2

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2221-2229, 2021, DOI:10.32604/cmc.2021.017073 - 13 April 2021

    Abstract Object recognition and location has always been one of the research hotspots in machine vision. It is of great value and significance to the development and application of current service robots, industrial automation, unmanned driving and other fields. In order to realize the real-time recognition and location of indoor scene objects, this article proposes an improved YOLOv3 neural network model, which combines densely connected networks and residual networks to construct a new YOLOv3 backbone network, which is applied to the detection and recognition of objects in indoor scenes. In this article, RealSense D415 RGB-D camera… More >

Displaying 1-10 on page 1 of 6. Per Page