Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,676)
  • Open Access

    ARTICLE

    Formation of Water Quality of Surface Water Bodies Used in the Material Processing

    Tatyana Lyubimova1,*, Anatoly Lepikhin2, Yanina Parshakova1, Irina Zayakina3, Alibek Issakhov4

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 815-828, 2024, DOI:10.32604/fdmp.2024.048463

    Abstract In the process of production or processing of materials by various methods, there is a need for a large volume of water of the required quality. Today in many regions of the world, there is an acute problem of providing industry with water of a required quality. Its solution is an urgent and difficult task. The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors, and is often significantly heterogeneous not only in the water area, but also in depth. As a rule, the water supply of large… More >

  • Open Access

    ARTICLE

    Averaged Dynamics of Fluids near the Oscillating Interface in a Hele-Shaw Cell

    Anastasia Bushueva, Olga Vlasova, Denis Polezhaev*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 847-857, 2024, DOI:10.32604/fdmp.2024.048271

    Abstract The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied. The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem. We consider miscible (water and glycerol) and immiscible (water and high-viscosity silicone oil PMS-1000) fluids under subsonic oscillations perpendicular to the interface. Observations show that the interface shape depends on the amplitude and frequency of oscillations. The interface is undisturbed only in the absence of oscillations. Under small amplitudes, the interface between water and glycerol widens due to mixing. When the… More >

  • Open Access

    ARTICLE

    Dynamics of Low-Viscosity Liquids Interface in an Unevenly Rotating Vertical Layer

    Victor Kozlov1,*, Vladimir Saidakov1, Nikolai Kozlov2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 693-703, 2024, DOI:10.32604/fdmp.2024.048068

    Abstract The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied. The layer has a circular axisymmetric boundary. In the absence of modulation of the rotation speed, the interphase boundary has the shape of a short axisymmetric cylinder. A new effect has been discovered, under the influence of rotation speed modulation, the interface takes on a new dynamic equilibrium state. A more viscous liquid covers the end boundaries of the layer in the form of thin films, which have the shape of round spots of almost constant radius;… More >

  • Open Access

    ARTICLE

    Preparation and Analysis of Carbon Fiber-Silicon Carbide Thermally Conductive Asphalt Concrete

    Zhiyong Yang, Enjie Hu, Lei Xi, Zhi Chen*, Feng Xiong, Chuanhai Zhan

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 705-723, 2024, DOI:10.32604/fdmp.2023.044030

    Abstract An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented. The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly. The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method, and the related performances were measured. Then the temperature rise rate and surface temperature were studied through field heating tests. Finally,… More >

  • Open Access

    ARTICLE

    Influence of Flap Parameters on the Aerodynamic Performance of a Wind-Turbine Airfoil

    Yuanjun Dai1,2, Jingan Cui1, Baohua Li1,*, Cong Wang1, Kunju Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 771-786, 2024, DOI:10.32604/fdmp.2023.029584

    Abstract A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient, lift coefficient, and drag coefficient. The numerical results demonstrate that the flap can effectively improve the lift coefficient of the airfoil; however, at small attack angles, its influence is significantly reduced. When the angle of attack exceeds the critical stall angle and the flap height is 1.5% of the chord length, the influence of the flap becomes very evident. As the flap height… More >

  • Open Access

    ARTICLE

    SAM Era: Can It Segment Any Industrial Surface Defects?

    Kechen Song1,2,*, Wenqi Cui2, Han Yu1, Xingjie Li1, Yunhui Yan2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3953-3969, 2024, DOI:10.32604/cmc.2024.048451

    Abstract Segment Anything Model (SAM) is a cutting-edge model that has shown impressive performance in general object segmentation. The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model. Due to its superior performance in general object segmentation, it quickly gained attention and interest. This makes SAM particularly attractive in industrial surface defect segmentation, especially for complex industrial scenes with limited training data. However, its segmentation ability for specific industrial scenes remains unknown. Therefore, in this work, we select three representative and complex industrial surface defect detection scenarios, namely strip steel surface defects, tile surface defects,… More >

  • Open Access

    ARTICLE

    Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

    Ying Su1, Morgan C. Wang1, Shuai Liu2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3529-3549, 2024, DOI:10.32604/cmc.2024.047189

    Abstract Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning (AutoML). At present, forecasting, whether rooted in machine learning or statistical learning, typically relies on expert input and necessitates substantial manual involvement. This manual effort spans model development, feature engineering, hyper-parameter tuning, and the intricate construction of time series models. The complexity of these tasks renders complete automation unfeasible, as they inherently demand human intervention at multiple junctures. To surmount these challenges, this article proposes leveraging Long Short-Term Memory, which is the variant of Recurrent Neural Networks, harnessing memory cells and gating mechanisms… More >

  • Open Access

    ARTICLE

    A Hybrid Machine Learning Approach for Improvised QoE in Video Services over 5G Wireless Networks

    K. B. Ajeyprasaath, P. Vetrivelan*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3195-3213, 2024, DOI:10.32604/cmc.2023.046911

    Abstract Video streaming applications have grown considerably in recent years. As a result, this becomes one of the most significant contributors to global internet traffic. According to recent studies, the telecommunications industry loses millions of dollars due to poor video Quality of Experience (QoE) for users. Among the standard proposals for standardizing the quality of video streaming over internet service providers (ISPs) is the Mean Opinion Score (MOS). However, the accurate finding of QoE by MOS is subjective and laborious, and it varies depending on the user. A fully automated data analytics framework is required to reduce the inter-operator variability characteristic… More >

  • Open Access

    ARTICLE

    Optimal Scheduling of Multiple Rail Cranes in Rail Stations with Interference Crane Areas

    Nguyen Vu Anh Duy, Nguyen Le Thai, Nguyen Huu Tho*

    Intelligent Automation & Soft Computing, Vol.39, No.1, pp. 15-31, 2024, DOI:10.32604/iasc.2024.038272

    Abstract In this paper, we consider a multi-crane scheduling problem in rail stations because their operations directly influence the throughput of the rail stations. In particular, the job is not only assigned to cranes but also the job sequencing is implemented for each crane to minimize the makespan of cranes. A dual cycle of cranes is used to minimize the number of working cycles of cranes. The rail crane scheduling problems in this study are based on the movement of containers. We consider not only the gantry moves, but also the trolley moves as well as the re-handle cases are also… More >

  • Open Access

    ARTICLE

    Performance Simulation of a Double Tube Heat Exchanger Based on Different Nanofluids by Aspen Plus

    Fawziea M. Hussien1, Atheer S. Hassoon2,*, Ghaidaa M. Ahmed1

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 175-191, 2024, DOI:10.32604/fhmt.2023.047177

    Abstract A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity. Adding nanoparticles of high thermal conductivity materials is a significant way to enhance the heat transfer fluid's thermal conductivity. This research used engine oil containing alumina (Al2O3) nanoparticles and copper oxide (CuO) to test whether or not the heat exchanger’s efficiency could be improved. To establish the most effective elements for heat transfer enhancement, the heat exchangers thermal performance was tested at 0.05% and 0.1% concentrations for Al2O3 and CuO nanoparticles. The simulation results showed that the percentage increase in Nusselt number (Nu)… More >

Displaying 1-10 on page 1 of 1676. Per Page