Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,620)
  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on the Markov Transition Field and SE-IShufflenetV2 Model

    Chaozhi Cai*, Tiexin Xu, Jianhua Ren, Yingfang Xue

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 125-144, 2025, DOI:10.32604/sdhm.2024.052813 - 15 November 2024

    Abstract A bearing fault diagnosis method based on the Markov transition field (MTF) and SEnet (SE)-IShufflenetV2 model is proposed in this paper due to the problems of complex working conditions, low fault diagnosis accuracy, and poor generalization of rolling bearing. Firstly, MTF is used to encode one-dimensional time series vibration signals and convert them into time-dependent and unique two-dimensional feature images. Then, the generated two-dimensional dataset is fed into the SE-IShufflenetV2 model for training to achieve fault feature extraction and classification. This paper selects the bearing fault datasets from Case Western Reserve University and Paderborn University… More >

  • Open Access

    ARTICLE

    Rapid Parameter-Optimizing Strategy for Plug-and-Play Devices in DC Distribution Systems under the Background of Digital Transformation

    Zhi Li1, Yufei Zhao2, Yueming Ji2, Hanwen Gu2, Zaibin Jiao2,*

    Energy Engineering, Vol.121, No.12, pp. 3899-3927, 2024, DOI:10.32604/ee.2024.055899 - 22 November 2024

    Abstract By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement, information communication, and other fields, the digital DC distribution network can efficiently and reliably access Distributed Generator (DG) and Energy Storage Systems (ESS), exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play (PnP) operations. However, during device plug-in and -out processes, improper system parameters may lead to small-signal stability issues. Therefore, before executing PnP operations, conducting stability analysis and adjusting parameters swiftly is crucial. This study introduces a four-stage strategy for parameter optimization to enhance… More >

  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    REVIEW

    Discrete Choice Models and Artificial Intelligence Techniques for Predicting the Determinants of Transport Mode Choice—A Systematic Review

    Mujahid Ali*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2161-2194, 2024, DOI:10.32604/cmc.2024.058888 - 18 November 2024

    Abstract Forecasting travel demand requires a grasp of individual decision-making behavior. However, transport mode choice (TMC) is determined by personal and contextual factors that vary from person to person. Numerous characteristics have a substantial impact on travel behavior (TB), which makes it important to take into account while studying transport options. Traditional statistical techniques frequently presume linear correlations, but real-world data rarely follows these presumptions, which may make it harder to grasp the complex interactions. Thorough systematic review was conducted to examine how machine learning (ML) approaches might successfully capture nonlinear correlations that conventional methods may… More >

  • Open Access

    ARTICLE

    An Investigation of Frequency-Domain Pruning Algorithms for Accelerating Human Activity Recognition Tasks Based on Sensor Data

    Jian Su1, Haijian Shao1,2,*, Xing Deng1, Yingtao Jiang2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2219-2242, 2024, DOI:10.32604/cmc.2024.057604 - 18 November 2024

    Abstract The rapidly advancing Convolutional Neural Networks (CNNs) have brought about a paradigm shift in various computer vision tasks, while also garnering increasing interest and application in sensor-based Human Activity Recognition (HAR) efforts. However, the significant computational demands and memory requirements hinder the practical deployment of deep networks in resource-constrained systems. This paper introduces a novel network pruning method based on the energy spectral density of data in the frequency domain, which reduces the model’s depth and accelerates activity inference. Unlike traditional pruning methods that focus on the spatial domain and the importance of filters, this… More >

  • Open Access

    ARTICLE

    Comparative Analysis of Machine Learning Algorithms for Email Phishing Detection Using TF-IDF, Word2Vec, and BERT

    Arar Al Tawil1,*, Laiali Almazaydeh2, Doaa Qawasmeh3, Baraah Qawasmeh4, Mohammad Alshinwan1,5, Khaled Elleithy6

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3395-3412, 2024, DOI:10.32604/cmc.2024.057279 - 18 November 2024

    Abstract Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information, a practice known as phishing. This study utilizes three distinct methodologies, Term Frequency-Inverse Document Frequency, Word2Vec, and Bidirectional Encoder Representations from Transformers, to evaluate the effectiveness of various machine learning algorithms in detecting phishing attacks. The study uses feature extraction methods to assess the performance of Logistic Regression, Decision Tree, Random Forest, and Multilayer Perceptron algorithms. The best results for each classifier using Term Frequency-Inverse Document Frequency were Multilayer Perceptron (Precision: 0.98, Recall: 0.98, F1-score: 0.98, Accuracy: 0.98). Word2Vec’s More >

  • Open Access

    ARTICLE

    How Software Engineering Transforms Organizations: An Open and Qualitative Study on the Organizational Objectives and Motivations in Agile Transformations

    Alonso Alvarez, Borja Bordel Sánchez*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2935-2966, 2024, DOI:10.32604/cmc.2024.056990 - 18 November 2024

    Abstract Agile Transformations are challenging processes for organizations that look to extend the benefits of Agile philosophy and methods beyond software engineering. Despite the impact of these transformations on organizations, they have not been extensively studied in academia. We conducted a study grounded in workshops and interviews with 99 participants from 30 organizations, including organizations undergoing transformations (“final organizations”) and companies supporting these processes (“consultants”). The study aims to understand the motivations, objectives, and factors driving and challenging these transformations. Over 700 responses were collected to the question and categorized into 32 objectives. The findings show More >

  • Open Access

    ARTICLE

    Secure Transmission Scheme for Blocks in Blockchain-Based Unmanned Aerial Vehicle Communication Systems

    Ting Chen1, Shuna Jiang2, Xin Fan3,*, Jianchuan Xia2, Xiujuan Zhang2, Chuanwen Luo3, Yi Hong3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2195-2217, 2024, DOI:10.32604/cmc.2024.056960 - 18 November 2024

    Abstract In blockchain-based unmanned aerial vehicle (UAV) communication systems, the length of a block affects the performance of the blockchain. The transmission performance of blocks in the form of finite character segments is also affected by the block length. Therefore, it is crucial to balance the transmission performance and blockchain performance of blockchain communication systems, especially in wireless environments involving UAVs. This paper investigates a secure transmission scheme for blocks in blockchain-based UAV communication systems to prevent the information contained in blocks from being completely eavesdropped during transmission. In our scheme, using a friendly jamming UAV… More >

  • Open Access

    ARTICLE

    Adaptive Video Dual Domain Watermarking Scheme Based on PHT Moment and Optimized Spread Transform Dither Modulation

    Yucheng Liang1,2,*, Ke Niu1,2,*, Yingnan Zhang1,2, Yifei Meng1,2, Fangmeng Hu1,2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2457-2492, 2024, DOI:10.32604/cmc.2024.056438 - 18 November 2024

    Abstract To address the challenges of video copyright protection and ensure the perfect recovery of original video, we propose a dual-domain watermarking scheme for digital video, inspired by Robust Reversible Watermarking (RRW) technology used in digital images. Our approach introduces a parameter optimization strategy that incrementally adjusts scheme parameters through attack simulation fitting, allowing for adaptive tuning of experimental parameters. In this scheme, the low-frequency Polar Harmonic Transform (PHT) moment is utilized as the embedding domain for robust watermarking, enhancing stability against simulation attacks while implementing the parameter optimization strategy. Through extensive attack simulations across various… More >

  • Open Access

    REVIEW

    Computing Challenges of UAV Networks: A Comprehensive Survey

    Altaf Hussain1, Shuaiyong Li2, Tariq Hussain3, Xianxuan Lin4,*, Farman Ali5,*, Ahmad Ali AlZubi6

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 1999-2051, 2024, DOI:10.32604/cmc.2024.056183 - 18 November 2024

    Abstract Devices and networks constantly upgrade, leading to rapid technological evolution. Three-dimensional (3D) point cloud transmission plays a crucial role in aerial computing terminology, facilitating information exchange. Various network types, including sensor networks and 5G mobile networks, support this transmission. Notably, Flying Ad hoc Networks (FANETs) utilize Unmanned Aerial Vehicles (UAVs) as nodes, operating in a 3D environment with Six Degrees of Freedom (6DoF). This study comprehensively surveys UAV networks, focusing on models for Light Detection and Ranging (LiDAR) 3D point cloud compression/transmission. Key topics covered include autonomous navigation, challenges in video streaming infrastructure, motivations for More >

Displaying 1-10 on page 1 of 2620. Per Page