Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Experimental Study on Flow Boiling Characteristics of Low-GWP Fluid R1234yf in Microchannels Heat Sink

    Ying Zhang1,2, Chao Dang1,2,*, Zhiqiang Zhang1,2

    Frontiers in Heat and Mass Transfer, Vol.23, No.4, pp. 1215-1242, 2025, DOI:10.32604/fhmt.2025.067373 - 29 August 2025

    Abstract In this study, the flow boiling characteristics of R1234yf in parallel microchannels were experimentally investigated. The experiments were conducted with heat flux from 0 to 550 kW/m2, mass flux of 434, 727, and 1015 kg/(m2 s), saturation temperatures of 293, 298, and 303 K, and inlet sub-cooling of 5, 10, and 15 K. The analysis of the experimental results provides the following conclusions: a reduced mass flux and lower subcooling correspond to a diminished degree of superheat at the boiling inception wall; conversely, an elevated saturation temperature results in a reduced amount of superheat at the… More >

  • Open Access

    ARTICLE

    Heat Transfer Enhancement Using R1234yf Refrigerants in Micro-Ribbed Tubes in a Two-Phase Flow Regime

    Daoming Shen1,*, Xia Zhang1, Wei He1, Jinhong Xia1, Songtao Xue2

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.6, pp. 1259-1272, 2020, DOI:10.32604/fdmp.2020.010951 - 17 December 2020

    Abstract Experiments about heat transfer in the presence of a two-phase flow due to the condensation of a R1234yf refrigerant have been performed considering a smooth tube and two micro-fin tubes. The following experimental conditions have been considered: Condensation temperatures of 40°C, 43°C and 45°C, mass fluxes of 500–900 kg/(m2 ·s), vapor qualities at the inlet and outlet of the heat transfer tube in the ranges 0.8–0.9 and 0.2–0.3, respectively. These tests have shown that: (1) The heat transfer coefficient increases with decreasing the condensation temperature and on increasing the mass flux; (2) The heat transfer coeffi-… More >

Displaying 1-10 on page 1 of 2. Per Page